
NetRexx 3

September 5th, 2011

Rexx Language Association
and

Mike Cowlishaw

http://rexxla.org

Version 3.01

http://rexxla.org/

Copyright © Mike Cowlishaw 1979, 2009.

Parts Copyright © IBM Corporation 1996, 2000.

Parts Copyright © Rexx Language Association 2009.

All rights reserved.

Table of Contents

License Information 7

 9

Introduction 11
Language objectives 11
Language concepts 14
Acknowledgements 19

NetRexx Overview 21
NetRexx programs 22
Expressions and variables 23
Control instructions 25
NetRexx arithmetic 26
Doing things with strings 27
Parsing strings 28
Indexed strings 29
Arrays 30
Things that aren’t strings 31
Extending classes 33
Tracing 35
Binary types and conversions 37
Exception and error handling 39

NetRexx Language Definition 41
Notations 42
Characters and Encodings 43
Structure and General Syntax 44

Blanks and White Space 44
Comments 44
Tokens 45
Implied semicolons and continuations 48
The case of names and symbols 48
Hexadecimal and binary numeric symbols 49

Types and Classes 50
Terms 52

Evaluation of terms 53
Methods and Constructors 57

Method call instructions 57

Version 3.01 3

Method resolution (search order) 58
Method overriding 59
Constructor methods 60

Type conversions 62
Expressions and Operators 65

Operators 65
Numbers 69
Parentheses and operator precedence 69

Clauses and Instructions 71
Assignments and Variables 72
Indexed strings and Arrays 76

Arrays 77
Keyword Instructions 80
Class instruction 81
Do instruction 85
Exit instruction 87
If instruction 88
Import instruction 90
Iterate instruction 92
Leave instruction 93
Loop instruction 94
Method instruction 101
Nop instruction 106
Numeric instruction 107
Options instruction 109
Package instruction 113
Parse instruction 114
Properties instruction 115
Return instruction 117
Say instruction 118
Select instruction 119
Signal instruction 122
Trace instruction 123
Program structure 127

Program defaults 128
Minor and Dependent classes 130

Minor classes 130
Dependent classes 131
Restrictions 132

Special names and methods 133
Special names 133
Special methods 135

Parsing templates 136
Introduction to parsing 136
Parsing definition 137

Numbers and Arithmetic 142
Introduction 142
Definition 143

Binary values and operations 151

4 Version 3.01

Exceptions 154
Methods for NetRexx strings 157

The built-in methods 158

Appendix A – A Sample NetRexx Program 173

Appendix B – JavaBean Support 177
Indirect properties 178

Appendix C – The netrexx.lang Package 181
Exception classes 182
The Rexx class 183

Rexx constructors 183
Rexx arithmetic methods 184
Rexx miscellaneous methods 186

The RexxOperators interface class 187
The RexxSet class 188

Public properties 188
Constructors 188
Methods 189

Index 191

Version 3.01 5

License Information

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2009 International Business Machines Corporation

Copyright (c) 2011- Rexx Language Association (RexxLA)

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the
above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

Version 3.01 License Information 7

Version 3.01 9

Introduction

NetRexx is a general-purpose programming language inspired by two very different programming
languages, Rexx and Java™. It is designed for people, not computers. In this respect it follows Rexx
closely, with many of the concepts and most of the syntax taken directly from Rexx or its object-
oriented version, Object Rexx. From Java it derives static typing, binary arithmetic, the object model,
and exception handling. The resulting language not only provides the scripting capabilities and
decimal arithmetic of Rexx, but also seamlessly extends to large application development with fast
binary arithmetic.

The open source reference implementation (version 3 and later) of NetRexx produces classes for the
Java Virtual Machine, and in so doing demonstrates the value of that concrete interface between
language and machine: NetRexx classes and Java classes are entirely equivalent – NetRexx can use
any Java class (and vice versa) and inherits the portability and robustness of the Java environment.

This document is in three parts:

1. The objectives of the NetRexx language and the concepts underlying its design, and
acknowledgements.

2. An overview and introduction to the NetRexx language.

3. The definition of the language.

Appendices include a sample NetRexx program, a description of an experimental feature, and some
details of the contents of the netrexx.lang package.

Language objectives
This document describes a programming language, called NetRexx, which is derived from both Rexx
and Java. NetRexx is intended as a dialect of Rexx that can be as efficient and portable as languages
such as Java, while preserving the low threshold to learning and the ease of use of the original Rexx
language.

Features of Rexx

The Rexx programming language1 was designed with just one objective: to make programming easier
than it was before. The design achieved this by emphasizing readability and usability, with a
minimum of special notations and restrictions. It was consciously designed to make life easier for its
users, rather than for its implementers.

One important feature of Rexx syntax is keyword safety. Programming languages invariably need to
evolve over time as the needs and expectations of their users change, so this is an essential

1 Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.

Version 3.01 Introduction 11

requirement for languages that are intended to be executed from source.

Keywords in Rexx are not globally reserved but are recognized only in context. This language
attribute has allowed the language to be extended substantially over the years without invalidating
existing programs. Even so, some areas of Rexx have proved difficult to extend – for example,
keywords are reserved within instructions such as do. Therefore, the design for NetRexx takes the
concept of keyword safety even further than in Rexx, and also improves extensibility in other areas.

The great strengths of Rexx are its human-oriented features, including

• simplicity

• coherent and uncluttered syntax

• comprehensive string handling

• case-insensitivity

• arbitrary precision decimal arithmetic.

Care has been taken to preserve these. Conversely, its interpretive nature has always entailed a lack of
efficiency: excellent Rexx compilers do exist, from IBM and other companies, but cannot offer the full
speed of statically-scoped languages such as C 2 or Java. 3

Influence of Java

The system-independent design of Rexx makes it an obvious and natural fit to a system-independent
execution environment such as that provided by the Java Virtual Machine (JVM). The JVM,
especially when enhanced with “just-in-time” bytecode compilers that compile bytecodes into native
code just before execution, offers an effective and attractive target environment for a language like
Rexx.

Choosing the JVM as a target environment does, however, place significant constraints on the design
of a language suitable for that environment. For example, the semantics of method invocation are in
several ways determined by the environment rather than by the source language, and, to a large extent,
the object model (class structure, etc.) of the Java environment is imposed on languages that use it.

Also, Java maintains the C concept of primitive datatypes; types (such as int, a 32-bit signed integer)
which allow efficient use of the underlying hardware yet do not describe true objects. These types are
pervasive in classes and interfaces written in the Java language; any language intending to use Java
classes effectively must provide access to these types.

Equally, the exception (error handling) model of Java is pervasive, to the extent that methods must
check certain exceptions and declare those that are not handled within the method. This makes it
difficult to fit an alternative exception model.

The constraints of safety, efficiency, and environment necessitated that NetRexx would have to differ
in some details of syntax and semantics from Rexx; unlike Object Rexx, it could not be a fully
upwards-compatible extension of the language. 4 The need for changes, however, offered the
opportunity to make some significant simplifications and enhancements to the language, both to

2 Kernighan, B. W., and Ritchie, D. M., The C Programming Language (second edition), ISBN 0-13-110362-8, Prentice-
Hall, 1988.

3 Gosling, J. A., et al. The Java Language Specification, ISBN 0-201-63451-1, Addison-Wesley, 1996.
4 Nash, S. C., Object-Oriented REXX in Goldberg, G, and Smith, P. H. III, The Rexx Handbook, pp115-125, ISBN 0-

07-023682-8, McGraw-Hill, Inc., New York, 1992.

12 Introduction Version 3.01

improve its keyword safety and to strengthen other features of the original Rexx design.5 Some
additions from Object Rexx and ANSI Rexx 6 are also included.

Similarly, the concepts and philosophy of the Rexx design can profitably be applied to avoid many of
the minor irregularities that characterize the C and Java language family, by providing suitable
simplifications in the programming model. For example, the NetRexx looping construct has only one
form, rather than three, and exception handling can be applied to all blocks rather than requiring an
extra construct. Also, as in Rexx, all NetRexx storage allocation and de-allocation is implicit – an
explicit new operator is not required.

Further, the human-oriented design features of Rexx (case-insensitivity for identifiers, type deduction
from context, automatic conversions where safe, tracing, and a strong emphasis on string
representations of common values and numbers) make programming for the Java environment
especially easy in NetRexx.

A hybrid or a whole?

As in other mixtures, not all blends are a success; when first designing NetRexx, it was not at all
obvious whether the new language would be an improvement on its parents, or would simply reflect
the worst features of both.

The fulcrum of the design is perhaps the way in which datatyping is automated without losing the
static typing supported by Java. Typing in NetRexx is most apparent at interfaces – where it provides
most value – but within methods it is subservient and does not obscure algorithms. A simple concept,
binary classes, also lets the programmer choose between robust decimal arithmetic and less safe (but
faster) binary arithmetic for advanced programming where performance is a primary consideration.

The “seamless” integration of types into what was previously an essentially typeless language does
seem to have been a success, offering the advantages of strong typing while preserving the ease of use
and speed of development that Rexx programmers have enjoyed.

The end result of adding Java typing capabilities to the Rexx language is a single language that has
both the Rexx strengths for scripting and for writing macros for applications and the Java strengths of
robustness, good efficiency, portability, and security for application development.

5 See Cowlishaw, M. F., The Early History of REXX, IEEE Annals of the History of Computing, ISSN 1058-6180, Vol
16, No. 4, Winter 1994, pp15-24, and Cowlishaw, M. F., The Future of Rexx, Proceedings of Winter 1993
Meeting/SHARE 80, Volume II, p.2709, SHARE Inc., Chicago, 1993.

6 See American National Standard for Information Technology – Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

Version 3.01 Introduction 13

Language concepts
As described in the last section, NetRexx was created by applying the philosophy of the Rexx
language to the semantics required for programming the Java Virtual Machine (JVM). Despite the
assumption that the JVM is a “target environment” for NetRexx, it is intended that the language not be
environment-dependent; the essentials of the language do not depend on the JVM. Environment-
dependent details, such as the primitive types supported, are not part of the language specification.

The primary concepts of Rexx have been described before, in The Rexx Language, but it is worth
repeating them and also indicating where modifications and additions have been necessary to support
the concepts of statically-typed and object-oriented environments. The remainder of this section is
therefore a summary of the principal concepts of NetRexx.

Readability

One concept was central to the evolution of Rexx syntax, and hence NetRexx syntax: readability (used
here in the sense of perceived legibility). Readability in this sense is a somewhat subjective quality,
but the general principle followed is that the tokens which form a program can be written much as one
might write them in Western European languages (English, French, and so forth). Although NetRexx is
more formal than a natural language, its syntax is lexically similar to everyday text.

The structure of the syntax means that the language is readily adapted to a variety of programming
styles and layouts. This helps satisfy user preferences and allows a lexical familiarity that also
increases readability. Good readability leads to enhanced understandability, thus yielding fewer errors
both while writing a program and while reading it for information, debugging, or maintenance.
Important factors here are:

1. Punctuation and other special notations are required only when absolutely necessary to remove
ambiguity (though punctuation may often be added according to personal preference, so long as
it is syntactically correct). Where notations are used, they follow established conventions.

2. The language is essentially case-insensitive. A NetRexx programmer may choose a style of use
of uppercase and lowercase letters that he or she finds most helpful (rather than a style chosen
by some other programmer).

3. The classical constructs of structured and object-oriented programming are available in
NetRexx, and can undoubtedly lead to programs that are easier to read than they might
otherwise be. The simplicity and small number of constructs also make NetRexx an excellent
language for teaching the concepts of good structure.

4. Loose binding between the physical lines in a program and the syntax of the language ensures
that even though programs are affected by line ends, they are not irrevocably so. A clause may
be spread over several lines or put on just one line; this flexibility helps a programmer lay out
the program in the style felt to be most readable.

Natural data typing and decimal arithmetic

“Strong typing”, in which the values that a variable may take are tightly constrained, has been an
attribute of some languages for many years. The greatest advantage of strong typing is for the
interfaces between program modules, where errors are easy to introduce and difficult to catch. Errors
within modules that would be detected by strong typing (and which would not be detected from
context) are much rarer, certainly when compared with design errors, and in the majority of cases do
not justify the added program complexity.

14 Introduction Version 3.01

NetRexx, therefore, treats types as unobtrusively as possible, with a simple syntax for type description
which makes it easy to make types explicit at interfaces (for example, when describing the arguments
to methods).

By default, common values (identifiers, numbers, and so on) are described in the form of the symbolic
notation (strings of characters) that a user would normally write to represent those values. This natural
datatype for values also supports decimal arithmetic for numbers, so, from the user’s perspective,
numbers look like and are manipulated as strings, just as they would be in everyday use on paper.

When dealing with values in this way, no internal or machine representation of characters or numbers
is exposed in the language, and so the need for many data types is reduced. There are, for example, no
fundamentally different concepts of integer and real; there is just the single concept of number. The
results of all operations have a defined symbolic representation, and will therefore act consistently and
predictably for every correct implementation.

This concept also underlies the BASIC 7 language; indeed, Kemeny and Kurtz’s vision for BASIC
included many of the fundamental principles that inspired Rexx. For example, Thomas E. Kurtz
wrote:

“Regarding variable types, we felt that a distinction between ‘fixed’ and ‘floating’ was
less justified in 1964 than earlier ... to our potential audience the distinction between an
integer number and a non-integer number would seem esoteric. A number is a number is a
number.”8

For Rexx, intended as a scripting language, this approach was ideal; symbolic operations were all that
were necessary.

For NetRexx, however, it is recognized that for some applications it is necessary to take full advantage
of the performance of the underlying environment, and so the language allows for the use and
specification of binary arithmetic and types, if available. A very simple mechanism (declaring a class
or method to be binary) is provided to indicate to the language processor that binary arithmetic and
types are to be used where applicable. In this case, as in other languages, extra care has to be taken by
the programmer to avoid exceeding limits of number size and so on.

Emphasis on symbolic manipulation

Many values that NetRexx manipulates are (from the user’s point of view, at least) in the form of
strings of characters. Productivity is greatly enhanced if these strings can be handled as easily as
manipulating words on a page or in a text editor. NetRexx therefore has a rich set of character
manipulation operators and methods, which operate on values of type Rexx (the name of the class of
NetRexx strings).

Concatenation, the most common string operation, is treated specially in NetRexx. In addition to a
conventional concatenate operator (“||”), the novel blank operator from Rexx concatenates two data
strings together with a blank in between. Furthermore, if two syntactically distinct terms (such as a
string and a variable name) are abutted, then the data strings are concatenated directly. These operators
make it especially easy to build up complex character strings, and may at any time be combined with
the other operators.

7 Kemeny, J. G. and Kurtz, T. E., BASIC programming, John Wiley & Sons Inc., New York, 1967.
8 Kurtz, T. E., BASIC in Wexelblat, R. L. (Ed), History of Programming Languages, ISBN 0-12-745040-8, Academic

Press, New York 1981.

Version 3.01 Introduction 15

For example, the say instruction consists of the keyword say followed by any expression. In this
instance of the instruction, if the variable n has the value “6” then

say 'Sorry,' n*100/50'% were rejected'

would display the string

Sorry, 12% were rejected

Concatenation has a lower priority than the arithmetic operators. The order of evaluation of the
expression is therefore first the multiplication, then the division, then the concatenate-with-blank, and
finally the direct concatenation.

Since the concatenation operators are distinct from the arithmetic operators, very natural coercion
(automatic conversion) between numbers and character strings is possible. Further, explicit type-
casting (conversion of types) is effected by the same operators, at the same priority, making for a very
natural and consistent syntax for changing the types of results. For example,

i=int 100/7

would calculate the result of 100 divided by 7, convert that result to an integer (assuming int
describes an integer type) and then assign it to the variable i.

Nothing to declare

Consistent with the philosophy of simplicity, NetRexx does not require that variables within methods
be declared before use. Only the properties9 of classes – which may form part of their interface to
other classes – need be listed formally.

Within methods, the type of variables is deduced statically from context, which saves the programmer
the menial task of stating the type explicitly. Of course, if preferred, variables may be listed and
assigned a type at the start of each method.

Environment independence

The core NetRexx language is independent of both operating systems and hardware. NetRexx
programs, though, must be able to interact with their environment, which implies some dependence on
that environment (for example, binary representations of numbers may be required). Certain areas of
the language are therefore described as being defined by the environment.

Where environment-independence is defined, however, there may be a loss of efficiency – though this
can usually be justified in view of the simplicity and portability gained.

As an example, character string comparison in NetRexx is normally independent of case and of
leading and trailing blanks. (The string “ Yes ” means the same as “yes” in most applications.)
However, the influence of underlying hardware has often subtly affected this kind of design decision,
so that many languages only allow trailing blanks but not leading blanks, and insist on exact case
matching. By contrast, NetRexx provides the human-oriented relaxed comparison for strings as
default, with optional “strict comparison” operators.

Limited span syntactic units

The fundamental unit of syntax in the NetRexx language is the clause, which is a piece of program
text terminated by a semicolon (usually implied by the end of a line). The span of syntactic units is

9 Class variables and instance variables.

16 Introduction Version 3.01

therefore small, usually one line or less. This means that the syntax parser in the language processor
can rapidly detect and locate errors, which in turn means that error messages can be both precise and
concise.

It is difficult to provide good diagnostics for languages (such as Pascal and its derivatives) that have
large fundamental syntactic units. For these languages, a small error can often have a major or
distributed effect on the parser, which can lead to multiple error messages or even misleading error
messages.

Dealing with reality

A computer language is a tool for use by real people to do real work. Any tool must, above all, be
reliable. In the case of a language this means that it should do what the user expects. User expectations
are generally based on prior experience, including the use of various programming and natural
languages, and on the human ability to abstract and generalize.

It is difficult to define exactly how to meet user expectations, but it helps to ask the question “Could
there be a high astonishment factor associated with this feature?”. If a feature, accidentally misused,
gives apparently unpredictable results, then it has a high astonishment factor and is therefore
undesirable.

Another important attribute of a reliable software tool is consistency. A consistent language is by
definition predictable and is often elegant. The danger here is to assume that because a rule is
consistent and easily described, it is therefore simple to understand. Unfortunately, some of the most
elegant rules can lead to effects that are completely alien to the intuition and expectations of a user
who, after all, is human.

These constraints make programming language design more of an art than a science, if the usability of
the language is a primary goal. The problems are further compounded for NetRexx because the
language is suitable for both scripting (where rapid development and ease of use are paramount) and
for application development (where some programmers prefer extensive checking and redundant
coding). These conflicting goals are balanced in NetRexx by providing automatic handling of many
tasks (such as conversions between different representations of strings and numbers) yet allowing for
“strict” options which, for example, may require that all types be explicit, identifiers be identical in
case as well as spelling, and so on.

Be adaptable

Wherever possible NetRexx allows for the extension of instructions and other language constructs,
building on the experience gained with Rexx. For example, there is a useful set of common characters
available for future use, since only small set is used for the few special notations in the language.

Similarly, the rules for keyword recognition allow instructions to be added whenever required without
compromising the integrity of existing programs. There are no reserved keywords in NetRexx;
variable names chosen by a programmer always take precedence over recognition of keywords. This
ensures that NetRexx programs may safely be executed, from source, at a time or place remote from
their original writing – even if in the meantime new keywords have been added to the language.

A language needs to be adaptable because it certainly will be used for applications not foreseen by the
designer. Like all programming languages, NetRexx may (indeed, probably will) prove inadequate for
certain future applications; room for expansion and change is included to make the language more
adaptable and robust.

Version 3.01 Introduction 17

Keep the language small

NetRexx is designed as a small language. It is not the sum of all the features of Rexx and of Java;
rather, unnecessary features have been omitted. The intention has been to keep the language as small
as possible, so that users can rapidly grasp most of the language. This means that:

• the language appears less formidable to the new user

• documentation is smaller and simpler

• the experienced user can be aware of all the abilities of the language, and so has the whole tool
at his or her disposal

• there are few exceptions, special cases, or rarely used embellishments

• the language is easier to implement.

Many languages have accreted “neat” features which make certain algorithms easier to express;
analysis shows that many of these are rarely used. As a rough rule-of-thumb, features that simply
provided alternative ways of writing code were added to Rexx and NetRexx only if they were likely to
be used more often than once in five thousand clauses.

No defined size or shape limits

The language does not define limits on the size or shape of any of its tokens or data (although there
may be implementation restrictions). It does, however, define a few minimum requirements that must
be satisfied by an implementation. Wherever an implementation restriction has to be applied, it is
recommended that it should be of such a magnitude that few (if any) users will be affected.

Where arbitrary implementation limits are necessary, the language requires that the implementer use
familiar and memorable decimal values for the limits. For example 250 would be used in preference
to 255, 500 to 512, and so on.

18 Introduction Version 3.01

Acknowledgements
Much of NetRexx is based on earlier work, and I am indebted to the hundreds of people who
contributed to the development of Rexx, Object Rexx, and Java.

In the 1990s I gained many insights from the deliberations of the members of the X3J18 technical
committee, which, under the remarkable chairmanship of Brian Marks, led to the 1996 ANSI Standard
for Rexx. Many of the committee’s suggestions are incorporated in NetRexx.

Equally important have been the comments and feedback from the pioneering users of NetRexx, and
all those people who sent me comments on the language either directly or in the NetRexx mailing list
or forum. I would especially like to thank Ian Brackenbury, Barry Feigenbaum, Davis Foulger, Norio
Furukawa, Dion Gillard, Martin Lafaix, Max Marsiglietti, and Trevor Turton for their insightful
comments and encouragement.

I also thank IBM; my appointment as an IBM Fellow made it possible to make the implementation of
NetRexx a reality in months rather than years. IBM has also donated the NetRexx implementation to
the Rexx Language Association, with special thanks due to Matthew Emmons for piloting NetRexx
through the convoluted legal and other processes, and to René Jansen for massaging the NetRexx
reference implementation into shape for its Open Source release.

Finally, this document has relied on old but trusted technology for its creation: its GML markup was
processed using macros originally written by Bob O’Hara, and formatted using SCRIPT/VS, the IBM
Document Composition Facility. Geoff Bartlett provided critical advice on character sets and fonts for
the NetRexx book. This version, for NetRexx 3, uses a set of Rexx programs that convert that same
GML markup into OpenOffice Document Text format (XML files).

Mike Cowlishaw, 1997 and 2009

Version 3.01 Introduction 19

NetRexx Overview

This part of the document summarizes the main features of NetRexx, and is intended to help you start
using the language quickly. It is assumed that you have some knowledge of programming in a
language such as Rexx, C, BASIC, or Java, but a knowledge of “object-oriented” programming is not
needed.

This is not a complete tutorial, however – think of it more as a “taster”; it covers the main points of the
language and shows some examples you can try or modify. For full details of the language, consult
the third part of this document, the NetRexx Language Definition (see page 41).

Version 3.01 NetRexx Overview 21

NetRexx programs
The structure of a NetRexx program is extremely simple. This sample program, “toast”, is complete,
documented, and executable as it stands:

/* This wishes you the best of health. */
say 'Cheers!'

This program consists of two lines: the first is an optional comment that describes the purpose of the
program, and the second is a say instruction. say simply displays the result of the expression
following it – in this case just a literal string (you can use either single or double quotes around strings,
as you prefer).

To run this program using the reference implementation of NetRexx, create a file called toast.nrx
and copy or paste the two lines above into it. You can then use the NetRexxC Java program to
compile it:

java COM.ibm.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to run it:

java toast

You may also be able to use the netrexxc or nrc command to compile and run the program with a
single command (details may vary – see the installation and user’s guide document for your
implementation of NetRexx):

netrexxc toast -run

Of course, NetRexx can do more than just display a character string. Although the language has a
simple syntax, and has a small number of instruction types, it is powerful; the reference
implementation of the language allows full access to the rapidly growing collection of Java programs
known as class libraries, and allows new class libraries to be written in NetRexx.

The rest of this overview introduces most of the features of NetRexx. Since the economy, power, and
clarity of expression in NetRexx is best appreciated with use, you are urged to try using the language
yourself.

22 NetRexx Overview Version 3.01

Expressions and variables
Like say in the “toast” example, many instructions in NetRexx include expressions that will be
evaluated. NetRexx provides arithmetic operators (including integer division, remainder, and power
operators), several concatenation operators, comparison operators, and logical operators. These can be
used in any combination within a NetRexx expression (provided, of course, that the data values are
valid for those operations).

All the operators act upon strings of characters (known as NetRexx strings), which may be of any
length (typically limited only by the amount of storage available). Quotes (either single or double) are
used to indicate literal strings, and are optional if the literal string is just a number. For example, the
expressions:

'2' + '3'
'2' + 3
 2 + 3

would all result in '5'.

The results of expressions are often assigned to variables, using a conventional assignment syntax:

var1=5 /* sets var1 to '5' */
var2=(var1+2)*10 /* sets var2 to '70' */

You can write the names of variables (and keywords) in whatever mixture of uppercase and lowercase
that you prefer; the language is not case-sensitive.

This next sample program, “greet”, shows expressions used in various ways:

/* greet.nrx -- a short program to greet you. */
/* First display a prompt: */
say 'Please type your name and then press Enter:'
answer=ask /* Get the reply into 'answer' */

/* If no name was entered, then use a fixed */
/* greeting, otherwise echo the name politely. */
if answer='' then say 'Hello Stranger!'
 else say 'Hello' answer'!'

After displaying a prompt, the program reads a line of text from the user (“ask” is a keyword provided
by NetRexx) and assigns it to the variable answer. This is then tested to see if any characters were
entered, and different actions are taken accordingly; for example, if the user typed “Fred” in response
to the prompt, then the program would display:

Hello Fred!

As you see, the expression on the last say (display) instruction concatenated the string “Hello” to the
value of variable answer with a blank in between them (the blank is here a valid operator, meaning
“concatenate with blank”). The string “!” is then directly concatenated to the result built up so far.
These unobtrusive operators (the blank operator and abuttal) for concatenation are very natural and
easy to use, and make building text strings simple and clear.

The layout of instructions is very flexible. In the “greet” example, for instance, the if instruction could
be laid out in a number of ways, according to personal preference. Line breaks can be added at either
side of the then (or following the else).

Version 3.01 NetRexx Overview 23

In general, instructions are ended by the end of a line. To continue a instruction to a following line,
you can use a hyphen (minus sign) just as in English:

say 'Here we have an expression that is quite long,' -
 'so it is split over two lines'

This acts as though the two lines were all on one line, with the hyphen and any blanks around it being
replaced by a single blank. The net result is two strings concatenated together (with a blank in
between) and then displayed.

When desired, multiple instructions can be placed on one line with the aid of the semicolon separator:

if answer='Yes' then do; say 'OK!'; exit; end

(many people find multiple instructions on one line hard to read, but sometimes it is convenient).

24 NetRexx Overview Version 3.01

Control instructions
NetRexx provides a selection of control instructions, whose form was chosen for readability and
similarity to natural languages. The control instructions include if... then... else (as in the “greet”
example) for simple conditional processing:

if ask='Yes' then say "You answered Yes"
 else say "You didn't answer Yes"

select... when... otherwise... end for selecting from a number of alternatives:

select
 when a>0 then say 'greater than zero'
 when a<0 then say 'less than zero'
 otherwise say 'zero'
 end

select case i+1
 when 1 then say 'one'
 when 1+1 then say 'two'
 when 3, 4, 5 then say 'many'
 end

do... end for grouping:

if a>3 then do
 say 'A is greater than 3; it will be set to zero'
 a=0
 end

and loop... end for repetition:

/* repeat 10 times; I changes from 1 to 10 */
loop i=1 to 10
 say i
 end i

The loop instruction can be used to step a variable to some limit, by some increment, for a specified
number of iterations, and while or until some condition is satisfied. loop forever is also provided,
and loop over can be used to work through a collection of variables.

Loop execution may be modified by leave and iterate instructions that significantly reduce the
complexity of many programs.

The select, do, and loop constructs also have the ability to “catch” exceptions (see page 39) that
occur in the body of the construct. All three, too, can specify a finally instruction which introduces
instructions which are to be executed when control leaves the construct, regardless of how the
construct is ended.

Version 3.01 NetRexx Overview 25

NetRexx arithmetic
Character strings in NetRexx are commonly used for arithmetic (assuming, of course, that they
represent numbers). The string representation of numbers can include integers, decimal notation, and
exponential notation; they are all treated the same way. Here are a few:

'1234'
'12.03'
'-12'
'120e+7'

The arithmetic operations in NetRexx are designed for people rather than machines, so are decimal
rather than binary, do not overflow at certain values, and follow the rules that people use for
arithmetic. The operations are completely defined by the ANSI X3.274 standard for Rexx, so correct
implementations always give the same results.

An unusual feature of NetRexx arithmetic is the numeric instruction: this may be used to select the
arbitrary precision of calculations. You may calculate to whatever precision that you wish (for
financial calculations, perhaps), limited only by available memory. For example:

numeric digits 50
say 1/7

which would display

0.14285714285714285714285714285714285714285714285714

The numeric precision can be set for an entire program, or be adjusted at will within the program. The
numeric instruction can also be used to select the notation (scientific or engineering) used for
numbers in exponential format.

NetRexx also provides simple access to the native binary arithmetic of computers. Using binary
arithmetic offers many opportunities for errors, but is useful when performance is paramount. You
select binary arithmetic by adding the instruction:

options binary

at the top of a NetRexx program. The language processor will then use binary arithmetic (see page 37)
instead of NetRexx decimal arithmetic for calculations, if it can, throughout the program.

26 NetRexx Overview Version 3.01

Doing things with strings
A character string is the fundamental datatype of NetRexx, and so, as you might expect, NetRexx
provides many useful routines for manipulating strings. These are based on the functions of Rexx, but
use a syntax that is more like Java or other similar languages:

phrase='Now is the time for a party'
say phrase.word(7).pos('r')

The second line here can be read from left to right as:

take the variable phrase, find the seventh word, and then find the position of the first “r” in that
word.

This would display “3” in this case, because “r” is the third character in “party”.

(In Rexx, the second line above would have been written using nested function calls:

say pos('r', word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack from right to left to
work out exactly what’s going on.)

In the NetRexx syntax, at each point in the sequence of operations some routine is acting on the result
of what has gone before. These routines are called methods, to make the distinction from functions
(which act in isolation). NetRexx provides (as methods) most of the functions that were evolved for
Rexx, including:

• changestr (change all occurrences of a substring to another)

• copies (make multiple copies of a string)

• lastpos (find rightmost occurrence)

• left and right (return leftmost/rightmost character(s))

• pos and wordpos (find the position of string or a word in a string)

• reverse (swap end-to-end)

• space (pad between words with fixed spacing)

• strip (remove leading and/or trailing white space)

• verify (check the contents of a string for selected characters)

• word, wordindex, wordlength, and words (work with words).

These and the others like them, and the parsing described in the next section, make it especially easy
to process text with NetRexx.

Version 3.01 NetRexx Overview 27

Parsing strings
The previous section described some of the string-handling facilities available; NetRexx also provides
string parsing, which is an easy way of breaking up strings of characters using simple pattern
matching.

A parse instruction first specifies the string to be parsed. This can be any term, but is often taken
simply from a variable. The term is followed by a template which describes how the string is to be
split up, and where the pieces are to be put.

Parsing into words

The simplest form of parsing template consists of a list of variable names. The string being parsed is
split up into words (sequences of characters separated by blanks), and each word from the string is
assigned (copied) to the next variable in turn, from left to right. The final variable is treated specially
in that it will be assigned a copy of whatever is left of the original string and may therefore contain
several words. For example, in:

parse 'This is a sentence.' v1 v2 v3

the variable v1 would be assigned the value “This”, v2 would be assigned the value “is”, and v3
would be assigned the value “a sentence.”.

Literal patterns

A literal string may be used in a template as a pattern to split up the string. For example

parse 'To be, or not to be?' w1 ',' w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point; each section is then
treated in just the same way as the whole string was in the previous example.

Thus, w1 would be set to “To be”, w2 and w3 would be assigned the values “or” and “not”, and w4
would be assigned the remainder: “to be?”. Note that the pattern itself is not assigned to any
variable.

The pattern may be specified as a variable, by putting the variable name in parentheses. The following
instructions:

comma=','
parse 'To be, or not to be?' w1 (comma) w2 w3 w4

therefore have the same effect as the previous example.

Positional patterns

The third kind of parsing mechanism is the numeric positional pattern. This allows strings to be parsed
using column positions.

28 NetRexx Overview Version 3.01

Indexed strings
NetRexx provides indexed strings, adapted from the compound variables of Rexx. Indexed strings
form a powerful “associative lookup”, or dictionary, mechanism which can be used with a convenient
and simple syntax.

NetRexx string variables can be referred to simply by name, or also by their name qualified by another
string (the index). When an index is used, a value associated with that index is either set:

fred=0 -- initial value
fred[3]='abc' -- indexed value

or retrieved:

say fred[3] -- would say "abc"

in the latter case, the simple (initial) value of the variable is returned if the index has not been used to
set a value. For example, the program:

bark='woof'
bark['pup']='yap'
bark['bulldog']='grrrrr'
say bark['pup'] bark['terrier'] bark['bulldog']

would display

yap woof grrrrr

Note that it is not necessary to use a number as the index; any expression may be used inside the
brackets; the resulting string is used as the index. Multiple dimensions may be used, if required:

bark='woof'
bark['spaniel', 'brown']='ruff'
bark['bulldog']='grrrrr'
animal='dog'
say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

which would display

ruff woof grrrrr

Here’s a more complex example using indexed strings, a test program with a function (called a static
method in NetRexx) that removes all duplicate words from a string of words:

/* justonetest.nrx -- test the justone function. */
say justone('to be or not to be') /* simple testcase */
exit

/* This removes duplicate words from a string, and */
/* shows the use of a variable (HADWORD) which is */
/* indexed by arbitrary data (words). */
method justone(wordlist) static
 hadword=0 /* show all possible words as new */
 outlist='' /* initialize the output list */
 loop while wordlist\='' /* loop while we have data */
 /* split WORDLIST into first word and residue */
 parse wordlist word wordlist
 if hadword[word] then iterate /* loop if had word */
 hadword[word]=1 /* remember we have had this word */
 outlist=outlist word /* add word to output list */
 end
 return outlist /* finally return the result */

Running this program would display just the four words “to”, “be”, “or”, and “not”.

Version 3.01 NetRexx Overview 29

Arrays
NetRexx also supports fixed-size arrays. These are an ordered set of items, indexed by integers. To
use an array, you first have to construct it; an individual item may then be selected by an index whose
value must be in the range 0 through n-1, where n is the number of items in the array:

array=String[3] -- make an array of three Strings
array[0]='String one' -- set each array item
array[1]='Another string'
array[2]='foobar'
loop i=0 to 2 -- display the items
 say array[i]
 end

This example also shows NetRexx line comments; the sequence “--” (outside of literal strings or “/*”
comments) indicates that the remainder of the line is not part of the program and is commentary.

NetRexx makes it easy to initialize arrays: a term which is a list of one or more expressions, enclosed
in brackets, defines an array. Each expression initializes an element of the array. For example:

words=['Ogof', 'Ffynnon', 'Ddu']

would set words to refer to an array of three elements, each referring to a string. So, for example, the
instruction:

say words[1]

would then display Ffynnon.

30 NetRexx Overview Version 3.01

Things that aren’t strings
In all the examples so far, the data being manipulated (numbers, words, and so on) were expressed as a
string of characters. Many things, however, can be expressed more easily in some other way, so
NetRexx allows variables to refer to other collections of data, which are known as objects.

Objects are defined by a name that lets NetRexx determine the data and methods that are associated
with the object. This name identifies the type of the object, and is usually called the class of the
object.

For example, an object of class Oblong might represent an oblong to be manipulated and displayed.
The oblong could be defined by two values: its width and its height. These values are called the
properties of the Oblong class.

Most methods associated with an object perform operations on the object; for example a size method
might be provided to change the size of an Oblong object. Other methods are used to construct objects
(just as for arrays, an object must be constructed before it can be used). In NetRexx and Java, these
constructor methods always have the same name as the class of object that they build (“Oblong”, in
this case).

Here’s how an Oblong class might be written in NetRexx (by convention, this would be written in a
file called Oblong.nrx; implementations often expect the name of the file to match the name of the
class inside it):

/* Oblong.nrx -- simple oblong class */
class Oblong
 width -- size (X dimension)
 height -- size (Y dimension)

 /* Constructor method to make a new oblong */
 method Oblong(newwidth, newheight)
 -- when we get here, a new (uninitialized) object
 -- has been created. Copy the parameters we have
 -- been given to the properties of the object:
 width=newwidth; height=newheight

 /* Change the size of an Oblong */
 method size(newwidth, newheight) returns Oblong
 width=newwidth; height=newheight
 return this -- return the resized object

 /* Change the size of an Oblong, relatively */
 method relsize(relwidth, relheight)-
 returns Oblong
 width=width+relwidth; height=height+relheight
 return this

 /* 'Print' what we know about the oblong */
 method print
 say 'Oblong' width 'x' height

To summarize:

1. A class is started by the class instruction, which names the class.

2. The class instruction is followed by a list of the properties of the object. These can be assigned
initial values, if required.

3. The properties are followed by the methods of the object. Each method is introduced by a

Version 3.01 NetRexx Overview 31

method instruction which names the method and describes the arguments that must be supplied
to the method. The body of the method is ended by the next method instruction (or by the end of
the file).

The Oblong.nrx file is compiled just like any other NetRexx program, and should create a class file
called Oblong.class. Here’s a program to try out the Oblong class:

/* tryOblong.nrx -- try the Oblong class */

first=Oblong(5,3) -- make an oblong
first.print -- show it
first.relsize(1,1).print -- enlarge and print again

second=Oblong(1,2) -- make another oblong
second.print -- and print it

when tryOblong.nrx is compiled, you’ll notice (if your compiler makes a cross-reference listing
available) that the variables first and second have type Oblong. These variables refer to Oblongs,
just as the variables in earlier examples referred to NetRexx strings.

Once a variable has been assigned a type, it can only refer to objects of that type. This helps avoid
errors where a variable refers to an object that it wasn’t meant to.

Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are in fact classes (you
may have noticed that compiling them with the reference implementation creates xxx.class files,
where xxx is the name of the source file). The environment underlying the implementation will allow a
class to run as a stand-alone application if it has a static method called main which takes an array of
strings as its argument.

If necessary (that is, if there is no class instruction) NetRexx automatically adds the necessary class
and method instructions for a stand-alone application, and also an instruction to convert the array of
strings (each of which holds one word from the command string) to a single NetRexx string.

The automatic additions can also be included explicitly; the “toast” example could therefore have been
written:

/* This wishes you the best of health. */
class toast
 method main(argwords=String[]) static
 arg=Rexx(argwords)
 say 'Cheers!'

though in this program the argument string, arg, is not used.

32 NetRexx Overview Version 3.01

Extending classes
It’s common, when dealing with objects, to take an existing class and extend it. One way to do this is
to modify the source code of the original class – but this isn’t always available, and with many
different people modifying a class, classes could rapidly get over-complicated.

Languages that deal with objects, like NetRexx, therefore allow new classes of objects to be set up
which are derived from existing classes. For example, if you wanted a different kind of Oblong in
which the Oblong had a new property that would be used when printing the Oblong as a rectangle, you
might define it thus:

/* charOblong.nrx -- an oblong class with character */
class charOblong extends Oblong
 printchar -- the character for display

 /* Constructor to make a new oblong with character */
 method charOblong(newwidth, newheight, newprintchar)
 super(newwidth, newheight) -- make an oblong
 printchar=newprintchar -- and set the character

 /* 'Print' the oblong */
 method print
 loop for super.height
 say printchar.copies(super.width)
 end

There are several things worth noting about this example:

1. The “extends Oblong” on the class instruction means that this class is an extension of the
Oblong class. The properties and methods of the Oblong class are inherited by this class (that
is, appear as though they were part of this class).

Another common way of saying this is that “charOblong” is a subclass of “Oblong” (and
“Oblong” is the superclass of “charOblong”).

2. This class adds the printchar property to the properties already defined for Oblong.

3. The constructor for this class takes a width and height (just like Oblong) and adds a third
argument to specify a print character. It first invokes the constructor of its superclass (Oblong)
to build an Oblong, and finally sets the printchar for the new object.

4. The new charOblong object also prints differently, as a rectangle of characters, according to its
dimension. The print method (as it has the same name and arguments – none – as that of the
superclass) replaces (overrides) the print method of Oblong.

5. The other methods of Oblong are not overridden, and therefore can be used on charOblong
objects.

The charOblong.nrx file is compiled just like Oblong.nrx was, and should create a file called
charOblong.class.

Version 3.01 NetRexx Overview 33

Here’s a program to try it out:

/* trycharOblong.nrx -- try the charOblong class */

first=charOblong(5,3,'#') -- make an oblong
first.print -- show it
first.relsize(1,1).print -- enlarge and print again

second=charOblong(1,2,'*') -- make another oblong
second.print -- and print it

This should create the two charOblong objects, and print them out in a simple “character graphics”
form. Note the use of the method relsize from Oblong to resize the charOblong object.

Optional arguments

All methods in NetRexx may have optional arguments (omitted from the right) if desired. For an
argument to be optional, you must supply a default value. For example, if the charOblong constructor
was to have a default value for printchar, its method instruction could have been written:

method charOblong(newwidth, newheight, newprintchar='X')

which indicates that if no third argument is supplied then 'X' should be used. A program creating a
charOblong could then simply write:

first=charOblong(5,3) -- make an oblong

which would have exactly the same effect as if 'X' were specified as the third argument.

34 NetRexx Overview Version 3.01

Tracing
NetRexx tracing is defined as part of the language. The flow of execution of programs may be traced,
and this trace can be viewed as it occurs (or captured in a file). The trace can show each clause as it is
executed, and optionally show the results of expressions, etc. For example, the trace results in the
program “trace1.nrx”:

trace results
number=1/7
parse number before '.' after
say after'.'before

would result in:

 --- trace1.nrx
 2 *=* number=1/7
 >v> number "0.142857143"
 3 *=* parse number before '.' after
 >v> before "0"
 >v> after "142857143"
 4 *=* say after'.'before
 >>> "142857143.0"
142857143.0

where the line marked with “---” indicates the context of the trace, lines marked with “*=*” are the
instructions in the program, lines with “>v>” show results assigned to local variables, and lines with
“>>>” show results of un-named expressions.

Further, trace methods lets you trace the use of all methods in a class, along with the values of the
arguments passed to each method. Here’s the result of adding trace methods to the Oblong class
shown earlier and then running tryOblong:

 --- Oblong.nrx
 8 *=* method Oblong(newwidth, newheight)
 >a> newwidth "5"
 >a> newheight "3"
 26 *=* method print
Oblong 5 x 3
 20 *=* method relsize(relwidth, relheight)-
 21 *-* returns Oblong
 >a> relwidth "1"
 >a> relheight "1"
 26 *=* method print
Oblong 6 x 4
 10 *=* method Oblong(newwidth, newheight)
 >a> newwidth "1"
 >a> newheight "2"
 26 *=* method print
Oblong 1 x 2

where lines with “>a>” show the names and values of the arguments.

It’s often useful to be able to find out when (and where) a variable’s value is changed. The trace var
instruction does just that; it adds names to or removes names from a list of monitored variables. If the
name of a variable in the current class or method is in the list, then trace results is turned on for any
assignment, loop, or parse instruction that assigns a new value to the named variable.

Variable names to be added to the list are specified by listing them after the var keyword. Any name
may be optionally prefixed by a - sign., which indicates that the variable is to be removed from the
list.

Version 3.01 NetRexx Overview 35

For example, the program “trace2.nrx”:

trace var a b
-- now variables a and b will be traced
a=3
b=4
c=5
trace var -b c
-- now variables a and c will be traced
a=a+1
b=b+1
c=c+1
say a b c

would result in:

 --- trace2.nrx
 3 *=* a=3
 >v> a "3"
 4 *=* b=4
 >v> b "4"
 8 *=* a=a+1
 >v> a "4"
 10 *=* c=c+1
 >v> c "6"
4 5 6

36 NetRexx Overview Version 3.01

Binary types and conversions
Most programming environments support the notion of fixed-precision “primitive” binary types,
which correspond closely to the binary operations usually available at the hardware level in
computers. For the reference implementation, these types are:

• byte, short, int, and long – signed integers that will fit in 8, 16, 32, or 64 bits respectively

• float and double – signed floating point numbers that will fit in 32 or 64 bits respectively.

• char – an unsigned 16-bit quantity, holding a Unicode character

• boolean – a 1-bit logical value, representing 0 or 1 (“false” or “true”).

Objects of these types are handled specially by the implementation “under the covers” in order to
achieve maximum efficiency; in particular, they cannot be constructed like other objects – their value
is held directly. This distinction rarely matters to the NetRexx programmer: in the case of string
literals an object is constructed automatically; in the case of an int literal, an object is not
constructed.

Further, NetRexx automatically allows the conversion between the various forms of character strings
in implementations10 and the primitive types. The “golden rule” that is followed by NetRexx is that
any automatic conversion which is applied must not lose information: either it can be determined
before execution that the conversion is safe (as in int to String) or it will be detected at execution
time if the conversion fails (as in String to int).

The automatic conversions greatly simplify the writing of programs; the exact type of numeric and
string-like method arguments rarely needs to be a concern of the programmer.

For certain applications where early checking or performance override other considerations, the
reference implementation of NetRexx provides options for different treatment of the primitive types:

1. options strictassign – ensures exact type matching for all assignments. No conversions
(including those from shorter integers to longer ones) are applied. This option provides stricter
type-checking than most other languages, and ensures that all types are an exact match.

2. options binary – uses implementation-dependent fixed precision arithmetic on binary types
(also, literal numbers, for example, will be treated as binary, and local variables will be given
“native” types such as int or String, where possible).

Binary arithmetic currently gives better performance than NetRexx decimal arithmetic, but
places the burden of avoiding overflows and loss of information on the programmer.

The options instruction (which may list more than one option) is placed before the first class
instruction in a file; the binary keyword may also be used on a class or method instruction, to allow
an individual class or method to use binary arithmetic.

Explicit type assignment

You may explicitly assign a type to an expression or variable:

10 In the reference implementation, these are String, char, char[] (an array of characters), and the NetRexx string
type, Rexx.

Version 3.01 NetRexx Overview 37

i=int 3000000 -- 'i' is an 'int' with value 3000000
j=int 4000000 -- 'j' is an 'int' with value 4000000
k=int -- 'k' is an 'int', with no initial value
say i*j -- multiply and display the result
k=i*j -- multiply and assign result to 'k'

This example also illustrates an important difference between options nobinary and options binary.
With the former (the default) the say instruction would display the result “1.20000000E+13” and a
conversion overflow would be reported when the same expression is assigned to the variable k.

With options binary, binary arithmetic would be used for the multiplications, and so no error would
be detected; the say would display “-138625024” and the variable k takes the incorrect result.

Binary types in practice

In practice, explicit type assignment is only occasionally needed in NetRexx. Those conversions that
are necessary for using existing classes (or those that use options binary) are generally automatic. For
example, here is an “Applet” for use by Java-enabled browsers:

/* A simple graphics Applet */
class Rainbow extends Applet
 method paint(g=Graphics) -- called to repaint window
 maxx=size.width-1
 maxy=size.height-1
 loop y=0 to maxy
 col=Color.getHSBColor(y/maxy, 1, 1) -- new colour
 g.setColor(col) -- set it
 g.drawLine(0, y, maxx, y) -- fill slice
 end y

In this example, the variable col will have type Color, and the three arguments to the method
getHSBColor will all automatically be converted to type float. As no overflows are possible in this
example, options binary may be added to the top of the program with no other changes being
necessary.

38 NetRexx Overview Version 3.01

Exception and error handling
NetRexx doesn’t have a goto instruction, but a signal instruction is provided for abnormal transfer of
control, such as when something unusual occurs. Using signal raises an exception; all control
instructions are then “unwound” until the exception is caught by a control instruction that specifies a
suitable catch instruction for handling the exception.

Exceptions are also raised when various errors occur, such as attempting to divide a number by zero.
For example:

say 'Please enter a number:'
number=ask
do
 say 'The reciprocal of' number 'is:' 1/number
catch RuntimeException
 say 'Sorry, could not divide "'number'" into 1'
 say 'Please try again.'
end

Here, the catch instruction will catch any exception that is raised when the division is attempted
(conversion error, divide by zero, etc.), and any instructions that follow it are then executed. If no
exception is raised, the catch instruction (and any instructions that follow it) are ignored.

Any of the control instructions that end with end (do, loop, or select) may be modified with one or
more catch instructions to handle exceptions.

Version 3.01 NetRexx Overview 39

NetRexx Language Definition

This part of the document describes the NetRexx language, version 3.00. This version includes the
original NetRexx language11 together with additions made from 1997 through 2000 and previously
published in the NetRexx Language Supplement.

The language is described first in terms of the characters from which it is composed and its low-level
syntax, and then progressively through more complex constructions. Finally, special sections describe
the semantics of the more complicated areas.

Some features of the language, such as options keywords and binary arithmetic, are implementation-
dependent. Rather than leaving these important aspects entirely abstract, this description includes
summaries of the treatment of such items in the reference implementation of NetRexx. The reference
implementation is based on the Java environment and class libraries.

Paragraphs that refer to the reference implementation, and are therefore not strictly part of the
language definition, are shown in italics, like this one.

11 The NetRexx Language, M. F. Cowlishaw, ISBN 0-13-806332-X, Prentice-Hall, 1997

Version 3.01 NetRexx Language Definition 41

Notations
In this part of the document, various notations such as changes of font are used for clarity. Within the
text, a sans-serif bold font is used to indicate keywords, and an italic font is used to indicate technical
terms. An italic font is also used to indicate a reference to a technical term defined elsewhere or a
word in a syntax diagram that names a segment of syntax.

Similarly, in the syntax diagrams in this document, words (symbols) in the sans-serif bold font also
denote keywords or sub-keywords, and words (such as expression) in italics denote a token or
collection of tokens defined elsewhere. The brackets [and] delimit optional (and possibly alternative)
parts of the instructions, whereas the braces { and } indicate that one of a number of alternatives must
be selected. An ellipsis (...) following a bracket indicates that the bracketed part of the clause may
optionally be repeated.

Occasionally in syntax diagrams (e.g., for indexed references) brackets are “real” (that is, a bracket is
required in the syntax; it is not marking an optional part). These brackets are enclosed in single quotes,
thus: '[' or ']'.

Note that the keywords and sub-keywords in the syntax diagrams are not case-sensitive: the symbols
“IF” “If” and “iF” would all match the keyword shown in a syntax diagram as if.

Note also that most of the clause delimiters (“;”) shown can usually be omitted as they will be implied
by the end of a line.

42 NetRexx Language Definition Version 3.01

Characters and Encodings
In the definition of a programming language it is important to emphasize the distinction between a
character and the coded representation12 (encoding) of a character. The character “A”, for example, is
the first letter of the English (Roman) alphabet, and this meaning is independent of any specific coded
representation of that character. Different coded character sets (such as, for example, the ASCII13 and
EBCDIC14 codes) use quite different encodings for this character (decimal values 65 and 193,
respectively).

Except where stated otherwise, this document uses characters to convey meaning and not to imply a
specific character code (the exceptions are certain operations that specifically convert between
characters and their representations). At no time is NetRexx concerned with the glyph (actual
appearance) of a character.

Character Sets

Programming in the NetRexx language can be considered to involve the use of two character sets. The
first is used for expressing the NetRexx program itself, and is the relatively small set of characters
described in the next section. The second character set is the set of characters that can be used as
character data by a particular implementation of a NetRexx language processor. This character set may
be limited in size (sometimes to a limit of 256 different characters, which have a convenient 8-bit
representation), or it may be much larger. The Unicode15 character set, for example, allows for 65536
characters, each encoded in 16 bits.

Usually, most or all of the characters in the second (data) character set are also allowed within a
NetRexx program, but only within commentary or immediate (literal) data.

The NetRexx language explicitly defines the first character set, in order that programs will be portable
and understandable; at the same time it avoids restrictions due to the language itself on the character
set used for data. However, where the language itself manipulates or inspects the data (as when
carrying out arithmetic operations), there may be requirements on the data character set (for example,
numbers can only be expressed if there are digit characters in the set).

12 These terms have the meanings as defined by the International Organization for Standardization, in ISO 2382 Data
processing – Vocabulary.

13 American Standard Code for Information Interchange.
14 Extended Binary Coded Decimal Interchange Code.
15 The Unicode Standard: Worldwide Character Encoding, Version 1.0. Volume 1, ISBN 0-201-56788-1, 1991, and Volume

2, ISBN 0-201-60845-6 1992, Addison-Wesley, Reading, MA.

Version 3.01 NetRexx Language Definition 43

Structure and General Syntax
A NetRexx program is built up out of a series of clauses that are composed of: zero or more blanks
(which are ignored); a sequence of tokens (described in this section); zero or more blanks (again
ignored); and the delimiter “;” (semicolon) which may be implied by line-ends or certain keywords.
Conceptually, each clause is scanned from left to right before execution and the tokens composing it
are resolved.

Identifiers (known as symbols) and numbers are recognized at this stage, comments (described below)
are removed, and multiple blanks (except within literal strings) are reduced to single blanks. Blanks
adjacent to operator characters (see page 47) and special characters (see page 47) are also removed.

Blanks and White Space
Blanks (spaces) may be freely used in a program to improve appearance and layout, and most are
ignored. Blanks, however, are usually significant

• within literal strings (see below)

• between two tokens that are not special characters (for example, between two symbols or
keywords)

• between the two characters forming a comment delimiter

• immediately outside parentheses (“(” and “)”) or brackets (“[” and “]”).

For implementations that support tabulation (tab) and form feed characters, these characters outside of
literal strings are treated as if they were a single blank; similarly, if the last character in a NetRexx
program is the End-of-file character (EOF, encoded in ASCII as decimal 26), that character is ignored.

Comments
Commentary is included in a NetRexx program by means of comments. Two forms of comment
notation are provided: line comments are ended by the end of the line on which they start, and block
comments are typically used for more extensive commentary.

Line comments A line comment is started by a sequence of two adjacent hyphens (“--”); all
characters following that sequence up to the end of the line are then ignored by the
NetRexx language processor.

Example:

i=j+7 -- this line comment follows an assignment

Block
comments

A block comment is started by the sequence of characters “/*”, and is ended by the
same sequence reversed, “*/”. Within these delimiters any characters are allowed
(including quotes, which need not be paired). Block comments may be nested, which
is to say that “/*” and “*/” must pair correctly. Block comments may be anywhere,
and may be of any length. When a block comment is found, it is treated as though it
were a blank (which may then be removed, if adjacent to a special character).

Example:

/* This is a valid block comment */

The two characters forming a comment delimiter (“/*” or “*/”) must be adjacent

44 NetRexx Language Definition Version 3.01

(that is, they may not be separated by blanks or a line-end).

Note: It is recommended that NetRexx programs start with a block comment that describes the
program. Not only is this good programming practice, but some implementations may use this to
distinguish NetRexx programs from other languages.

Implementation minimum: Implementations should support nested block comments to a depth of at
least 10. The length of a comment should not be restricted, in that it should be possible to “comment
out” an entire program.

Tokens
The essential components of clauses are called tokens. These may be of any length, unless limited by
implementation restrictions,16 and are separated by blanks, comments, ends of lines, or by the nature of
the tokens themselves.

The tokens are:

Literal
strings

A sequence including any characters that can safely be represented in an
implementation17 and delimited by the single quote character (') or the double-quote (").
Use "" to include a " in a literal string delimited by ", and similarly use two single
quotes to include a single quote in a literal string delimited by single quotes. A literal
string is a constant and its contents will never be modified by NetRexx. Literal strings
must be complete on a single line (this means that unmatched quotes may be detected on
the line that they occur).

Any string with no characters (i.e., a string of length 0) is called a null string.

Examples:

'Fred'
'Aÿ'
"Don't Panic!"
":x"
'You shouldn''t' /* Same as "You shouldn't" */
'' /* A null string */

Within literal strings, characters that cannot safely or easily be represented (for example
“control characters”) may be introduced using an escape sequence. An escape sequence
starts with a backslash (“\”), which must then be followed immediately by one of the
following (letters may be in either uppercase or lowercase):

t the escape sequence represents a tabulation (tab) character

n the escape sequence represents a new-line (line feed) character

r the escape sequence represents a return (carriage return) character

f the escape sequence represents a form-feed character

" the escape sequence represents a double-quote character

' the escape sequence represents a single-quote character

16 Wherever arbitrary implementation restrictions are applied, the size of the restriction should be a number that is readily
memorable in the decimal system; that is, one of 1, 25, or 5 multiplied by a power of ten. 500 is preferred to 512, the
number 250 is more “natural” than 256, and so on. Limits expressed in digits should be a multiple of three.

17 Some implementations may not allow certain “control characters” in literal strings. These characters may be included in
literal strings by using one of the escape sequences provided.

Version 3.01 NetRexx Language Definition 45

\ the escape sequence represents a backslash character

- the escape sequence represents a “null” character (the character whose
encoding equals zero), used to indicate continuation in a say instruction

0 (zero) the escape sequence represents a “null” character (the character whose
encoding equals zero); an alternative to \-

xhh the escape sequence represents a character whose encoding is given by the two
hexadecimal digits (“hh”) following the “x”. If the character encoding for the
implementation requires more than two hexadecimal digits, they are padded
with zero digits on the left.

uhhhh the escape sequence represents a character whose encoding is given by the four
hexadecimal digits (“hhhh”) following the “u”. It is an error to use this escape
if the character encoding for the implementation requires fewer than four
hexadecimal digits.

Hexadecimal digits for use in the escape sequences above may be any decimal digit (0–
9) or any of the first six alphabetic characters (a–f), in either lowercase or uppercase.

Examples:

'You shouldn\'t' /* Same as "You shouldn't" */
'\x6d\u0066\x63' /* In Unicode: 'mfc' */
'\\\u005C' /* In Unicode, two backslashes */

Implementation minimum: Implementations should support literal strings of at least
100 characters. (But note that the length of string expression results, etc., should have a
much larger minimum, normally only limited by the amount of storage available.)

Symbols Symbols are groups of characters selected from the Roman alphabet in uppercase or
lowercase (A–Z, a–z), the Arabic numerals (0–9), or the characters underscore, dollar,
and euro18 (“_$€”). Implementations may also allow other alphabetic and numeric
characters in symbols to improve the readability of programs in languages other than
English. These additional characters are known as extra letters and extra digits.19

Examples:

DanYrOgof
minx
Élan
$Virtual3D

A symbol may include other characters only when the first character of the symbol is a
digit (0–9 or an extra digit). In this case, it is a numeric symbol – it may include a period
(“.”) and it must have the syntax of a number. This may be simple number, which is a
sequence of digits with at most one period (which may not be the final character of the
sequence), or it may be a hexadecimal or binary numeric symbol (see page 49), or it may
be a number expressed in exponential notation.

A number in exponential notation is a simple number followed immediately by the
sequence “E” (or “e”), followed immediately by a sign (“+” or “-”),20 followed

18 Note that only UTF8-encoded source files can currently use the euro character.
19 It is expected that implementations of NetRexx will be based on Unicode or a similarly rich character set. However,

portability to implementations with smaller character sets may be compromised when extra letters or extra digits are used
in a program.

20 The sign in this context is part of the symbol; it is not an operator.

46 NetRexx Language Definition Version 3.01

immediately by one or more digits (which may not be followed by any other symbol
characters).

Examples:

1
1.3
12.007
17.3E-12
3e+12
0.03E+9

When extra digits are used in numeric symbols, they must represent values in the range
zero through nine. When numeric symbols are used as numbers, any extra digits are first
converted to the corresponding character in the range 0-9, and then the symbol follows
the usual rules for numbers in NetRexx (that is, the most significant digit is on the left,
etc.).

In the reference implementation, the extra letters are those characters (excluding A-Z, a-
z, and underscore) that result in 1 when tested with
java.lang.Character.isLetter. Similarly, the extra digits are those characters
(excluding 0-9) that result in 1 when tested with java.lang.Character.isDigit.

The meaning of a symbol depends on the context in which it is used. For example, a
symbol may be a constant (if a number), a keyword, the name of a variable, or identify
some algorithm.

It is recommended that the dollar and euro only be used in symbols in mechanically
generated programs or where otherwise essential.

Implementation minimum: Implementations should support symbols of at least 50
characters. (But note that the length of its value, if it is a string variable, should have a
much larger limit.)

Operator
characters

The characters + - * / % | & = \ > < are used (sometimes in combination) to
indicate operations (see page 65) in expressions. A few of these are also used in parsing
templates, and the equals sign is also used to indicate assignment. Blanks adjacent to
operator characters are removed, so, for example, the sequences:

345>=123
345 >=123
345 >= 123
345 > = 123

are identical in meaning.

Some of these characters may not be available in all character sets, and if this is the case
appropriate translations may be used.

Note: The sequences “--”, “/*”, and “*/” are comment delimiters, as described earlier.
The sequences “++” and “\\” are not valid in NetRexx programs.

Special
characters

The characters . , ;) (] [together with the operator characters have
special significance when found outside of literal strings, and constitute the set of special
characters. They all act as token delimiters, and blanks adjacent to any of these (except
the period) are removed, except that a blank adjacent to the outside of a parenthesis or
bracket is only deleted if it is also adjacent to another special character (unless this is a
parenthesis or bracket and the blank is outside it, too).

Version 3.01 NetRexx Language Definition 47

Some of these characters may not be available in all character sets, and if this is the case
appropriate translations may be used.

To illustrate how a clause is composed out of tokens, consider this example:

'REPEAT' B + 3;

This is composed of six tokens: a literal string, a blank operator (described later), a symbol (which is
probably the name of a variable), an operator, a second symbol (a number), and a semicolon. The
blanks between the “B” and the “+” and between the “+” and the “3” are removed. However one of the
blanks between the 'REPEAT' and the “B” remains as an operator. Thus the clause is treated as though
written:

'REPEAT' B+3;

Implied semicolons and continuations
A semicolon (clause end) is implied at the end of each line, except if:

1. The line ends in the middle of a block comment, in which case the clause continues at the end of
the block comment.

2. The last token was a hyphen. In this case the hyphen is functionally replaced by a blank, and
hence acts as a continuation character.

This means that semicolons need only be included to separate multiple clauses on a single line.

Notes:

1. A comment is not a token, so therefore a comment may follow the continuation character on a
line.

2. Semicolons are added automatically by NetRexx after certain instruction keywords when in the
correct context. The keywords that may have this effect are else, finally, otherwise, then; they
become complete clauses in their own right when this occurs. These special cases reduce
program entry errors significantly.

The case of names and symbols
In general, NetRexx is a case-insensitive language. That is, the names of keywords, variables, and so
on, will be recognized independently of the case used for each letter in a name; the name “Swildon”
would match the name “swilDon”.

NetRexx, however, uses names that may be visible outside the NetRexx program, and these may well
be referenced by case-sensitive languages. Therefore, any name that has an external use (such as the
name of a property, method, constructor, or class) has a defined spelling, in which each letter of the
name has the case used for that letter when the name was first defined or used.

Similarly, the lookup of external names is both case-preserving and case-insensitive. If a class,
method, or property is referenced by the name “Foo”, for example, an exact-case match will first be
tried at each point that a search is made. If this succeeds, the search for a matching name is complete.
If it is does not succeed, a case-insensitive search in the same context is carried out, and if one item is
found, then the search is complete. If more than one item matches then the reference is ambiguous,
and an error is reported.

Implementations are encouraged to offer an option that requires that all name matches are exact (case-

48 NetRexx Language Definition Version 3.01

sensitive), for programmers or house-styles that prefer that approach to name matching.

Hexadecimal and binary numeric symbols
A hexadecimal numeric symbol describes a whole number, and is of the form nXstring. Here, n is a
simple number with no decimal part (and optional leading insignificant zeros) which describes the
effective length of the hexadecimal string, the X (which may be in lowercase) indicates that the
notation is hexadecimal, and string is a string of one or more hexadecimal characters (characters from
the ranges “a–f”, “A–F”, and the digits “0–9”).

The string is taken as a signed number expressed in n hexadecimal characters. If necessary, string is
padded on the left with “0” characters (note, not “sign-extended”) to length n characters.

If the most significant (left-most) bit of the resulting string is zero then the number is positive;
otherwise it is a negative number in twos-complement form. In both cases it is converted to a
NetRexx number which may, therefore, be negative. The result of the conversion is a number
comprised of the Arabic digits 0–9, with no insignificant leading zeros but possibly with a leading “-”.

The value n may not be less than the number of characters in string, with the single exception that it
may be zero, which indicates that the number is always positive (as though n were greater than the the
length of string).

Examples:

1x8 == -8
2x8 == 8
2x08 == 8
0x08 == 8
0x10 == 16
0x81 == 129
2x81 == -127
3x81 == 129
4x81 == 129
04x81 == 129
16x81 == 129
4xF081 == -3967
8xF081 == 61569
0Xf081 == 61569

A binary numeric symbol describes a whole number using the same rules, except that the identifying
character is B or b, and the digits of string must be either 0 or 1, each representing a single bit.

Examples:

1b0 == 0
1b1 == -1
0b10 == 2
0b100 == 4
4b1000 == -8
8B1000 == 8

Note: Hexadecimal and binary numeric symbols are a purely syntactic device for representing decimal
whole numbers. That is, they are recognized only within the source of a NetRexx program, and are
not equivalent to a literal string with the same characters within quotes.

Version 3.01 NetRexx Language Definition 49

Types and Classes
Programs written in the NetRexx language manipulate values, such as names, numbers, and other
representations of data. All such values have an associated type (also known as a signature).

The type of a value is a descriptor which identifies the nature of the value and the operations that may
be carried out on that value.

A type is normally defined by a class, which is a named collection of values (called properties) and
procedures (called methods) for carrying out operations on the properties.

For example, a character string in NetRexx is usually of type Rexx, which will be implemented by the
class called Rexx. The class Rexx defines the properties of the string (a sequence of characters) and
the methods that work on strings. This type of string may be the subject of arithmetic operations as
well as more conventional string operations such as concatenation, and so the methods implement
string arithmetic as well as other string operations.

The names of types can further be qualified by the name of a package where the class is held. See the
package instruction for details of packages; in summary, a package name is a sequence of one or
more non-numeric symbols, separated by periods. Thus, if the Rexx class was part of the
netrexx.lang package,21 then its qualified type would be netrexx.lang.Rexx.

In general, only the class name need be specified to refer to a type. However, if a class of the same
name exists in more than one known (imported) package, then the name should be qualified by the
package name. That is, if the use of just the class name does not uniquely identify the class then the
reference is ambiguous and an error is reported.

Primitive types

Implementations may optionally provide primitive types for efficiency. Primitive types are “built-in”
types that are not necessarily implemented as classes. They typically represent concepts native to the
underlying environment (such as 32-bit binary integer numbers) and may exhibit semantics that are
different from other types. NetRexx, however, makes no syntax distinction in the names of primitive
types, and assumes binary constructors (see page 152) exist for primitive values.

Primitive types are necessary when performance is an overriding consideration, and so this definition
will assume that primitive types corresponding to the common binary number formats are available
and will describe how they differ from other types, where appropriate.

In the reference implementation, the names of the primitive types are:

boolean char byte short int long float double

where the first two describe a single-bit value and Unicode character respectively, and the remainder
describe signed numbers of various formats. The main difference between these and other types is that
the primitive types are not a subclass of Object, so they cannot be assigned to a variable of type
Object or passed to methods “by reference”. To use them in this way, an object must be created to
“wrap” them; Java provides classes for this (for example, the class Long).

21 This is in fact where it may be found in the reference implementation.

50 NetRexx Language Definition Version 3.01

Dimensioned types

Another feature that is provided for efficiency is the concept of dimensioned types, which are types
(normal or primitive) that have an associated dimension (in the sense of the dimensions of an array).
Dimensioned values are described in detail in the section on Arrays (see page 77).

The dimension of a dimensioned type is represented in NetRexx programs by square brackets
enclosing zero or more commas, where the dimension is given by the number of commas, plus one. A
dimensioned type is distinct from the type of the same name but with no dimensions.

Examples:

Rexx
int
Rexx[]
int[,,]

The examples show a normal type, a primitive type, and a dimensioned version of each (of dimension
1 and 3 respectively). The latter type would result from constructing an array thus:

myarray=int[10,10,10]

That is, the dimension of the type matches the count of indexes defined for the array.

Minor and Dependent classes

A minor class in NetRexx is a class whose name is qualified by the name of another class, called its
parent. This qualification is indicated by the form of the name of the class: the short name of the minor
class is prefixed by the name of its parent class (separated by a period). For example, if the parent is
called Foo then the full name of a minor class Bar would be written Foo.Bar.

A dependent class is a minor class that has a link to its parent class that allows a child object
simplified access to its parent object and its properties.

These refinements of classes and are described in the section Minor and Dependent classes (see page
130).

Version 3.01 NetRexx Language Definition 51

Terms
A term in NetRexx is a syntactic unit which describes some value (such as a literal string, a variable,
or the result of some computation) that can be manipulated in a NetRexx program.

Terms may be either simple (consisting of a single element) or compound (consisting of more than one
element, with a period and no other characters between each element).

Simple terms

A simple term may be:

• A literal string (see page 45) – a character string delimited by quotes, which is a constant.

• A symbol (see page 46). A symbol that does not begin with a digit identifies a variable, a value,
or a type. One that does begin with a digit is a numeric symbol, which is a constant.

• A method call (see page 57), which is of the form

symbol([expression[,expression]...])

• An indexed reference (see page 76), which is of the form22

symbol'['[expression[,expression]...]']'

• An array initializer (see page 78), which is of the form

'['expression[,expression]...']'

• A sub-expression (see page 69), which consists of any expression enclosed within a left and a
right parenthesis.

Blanks are not permitted between the symbol in a method call and the “(”, or between the symbol in
an indexed reference and the “[”.

Within simple terms, method calls with no arguments (that is, with no expressions between the
parentheses) may be expressed without the parentheses provided that they refer to a method in the
current class (or to a static method in a class used by the current class) and do not refer to a constructor
(see page 60). An implementation may optionally provide a mechanism that disallows this parenthesis
omission.

Compound terms

Compound terms may start with any simple term, and, in addition, may start with a qualified class
name (see page 113) or a qualified constructor (see page 57). These last two both start with a package
name (a sequence of non-numeric symbols separated by periods and ending in a period).

This first part of a compound term is known as the stub of the term.

22 The notations '[' and ']' indicate square brackets appearing in the NetRexx program.

52 NetRexx Language Definition Version 3.01

Example stubs:

"A string"
Arca
12.10
paint(g)
indexedVar[i+1]
("A" "string")
java.lang.Math -- qualified class name
netrexx.lang.Rexx(1) -- qualified constructor

All stubs are syntactically valid terms (either simple or compound) and may optionally be followed by
a continuation, which is one or more additional non-numeric symbols, method calls, or indexed
references, separated from each other and from the stub by connectors which are periods.

Example compound terms:

"A rabbit".word(2).pos('b')
Fluffy.left(3)
12.10.max(j)
paint(g).picture
indexedVar[i+1].length
("A" "string").word(1)
java.lang.Math.PI
java.lang.Math.log(10)

Within compound terms, method calls with no arguments (that is, with no expressions between the
parentheses) may be expressed without the parentheses provided that they do not refer to a constructor
(see page 60). For example, the term:

Thread.currentThread().suspend()

could be written:

Thread.currentThread.suspend

An implementation may optionally provide a mechanism that disallows this parenthesis omission.

Evaluation of terms
Simple terms are evaluated as a whole, as described below. Compound terms are evaluated from left to
right. First the stub is evaluated according to the rules detailed below. The type of the value of the
stub then qualifies the next element of the term (if any) which is then evaluated (again, the exact rules
are detailed below). This process is then repeated for each element in the term.

For instance, for the example above:

"A rabbit".word(2).pos('b')

the evaluation proceeds as follows:

1. The stub ("A rabbit") is evaluated, resulting in a string of type Rexx.

2. Because that string is of type Rexx, the Rexx class is then searched for the word method. This
is then invoked on the string, with argument 2. In other words, the word method is invoked with
the string “A rabbit” as its current context (the properties of the Rexx class when the method
is invoked reflect that value).

This returns a new string of type Rexx, “rabbit” (the second word in the original string).

3. In the same way as before, the pos method of the Rexx class is then invoked on the new string,
with argument “b”.

Version 3.01 NetRexx Language Definition 53

This returns a new string of type Rexx, “3” (the position of the first “b” in the previous result).

This value, “3”, is the final value of the term.

The remainder of this section gives the details of term evaluation; it is best skipped on first reading.

Simple term evaluation

All simple terms may also be used as stubs, and are evaluated in precisely the same way as stubs, as
described below. For example, numeric symbols are evaluated as though they were enclosed in
quotes; their value is a string of type Rexx.

In binary classes (see page 83), however, simple terms that are strings or numeric symbols are given
an implementation-defined string or primitive type respectively, as described in the section on Binary
values and operations (see page 151)

Stub evaluation

A term’s stub is evaluated according to the following rules:

• If the stub is a literal string, its value is the string, of type Rexx, constructed from that literal.

• If the stub is a numeric symbol, its value is the string, of type Rexx, constructed from that literal
(as though the literal were enclosed in quotes).

• If the stub is an unqualified method or constructor call, or a qualified constructor call, then its
value and type is the result of invoking the method identified by the stub, as described in
Methods and Constructors (see page 57).

• If the stub is a (non-numeric) symbol, then its value and type will be determined by whichever
of the following is first found:

1. A local variable or method argument within the current method, or a property in the current
class.

2. A method whose name matches the symbol, and takes no arguments, and that is not a
constructor, in the current class.23 If the stub is part of a compound symbol, then it may also
be in a superclass, searching upwards from the current class.

3. A static or constant property, or a static method,24 whose name matches the symbol (and that
takes no arguments, if a method) in a class listed in the uses phrase of the class instruction.
Each class from the list is searched for a matching property or method, and then its
superclasses are searched upwards from the class in the same way; this process is repeated
for each of the classes, in the order specified in the list.

4. One of the allowed special words described in Special words and methods (see page 133),
such as this or version.

5. The short name of a known class or primitive type (in which case the stub has no value, just
a type).

• If the stub is an indexed reference, then its value and type will be determined by whichever of
the following is first found:

1. The symbol naming the reference is an undimensioned local variable or method argument

23 Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.
24 Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.

54 NetRexx Language Definition Version 3.01

within the current method, or a property in the current class, which has type Rexx. In this
case, the reference is to an indexed string (see page 76); the expressions within the brackets
must be convertible to type Rexx, and the type of the result will be Rexx.

2. The symbol naming the reference is a dimensioned local variable or method argument within
the current method, or a property in the current class. In this case, the reference is to an
array (see page 77), and the expressions within the brackets must be convertible to whole
numbers allowed for array indexes. The type of the result will have the type of the array,
with dimensions reduced by the number of dimensions specified in the stub.

For example, if the array foo was of type Baa[,,,] and the stub referred to foo[1,2],
then the result would be of type Baa[,]. It would have been an error for the stub to have
specified more than four dimensions.

3. The symbol naming the reference is the name of a static or constant property in a class listed
in the uses phrase of the class instruction. Each class from the list is searched in the same
way as for symbols, above. The reference may be to an indexed string or an array, as for
properties in the current class.

4. The symbol naming the reference is the name of a primitive type or the short name of a
known class, and there are no expressions within the brackets (just optional commas). In this
case, the stub describes a dimensioned type (see page 51).

5. The symbol naming the reference is the name of a primitive type or is the short name of a
known class, and there are one or more expressions within the brackets. In this case, the
reference is to an array constructor (see page 77); the expressions within the brackets must
be convertible to non-negative whole numbers allowed for array indexes, and the value is an
array of the specified type, dimensions, and size.

• If the stub is a sub-expression, then its value and type will be determined by evaluating the
expression (see page 65) within the parentheses.

• If the stub starts with the name of a package, then it will either describe a qualified type (see
page 50) or a qualified constructor (see page 60). Its type will be same in either case, and if a
constructor then its value will be the value returned by the constructor.

If the stub is not followed by further segments, the final value and type of the term is the value and
type of the stub.

Continuation evaluation

Each segment of a term’s continuation is evaluated from left to right, according to the type of the
evaluation of the term so far (the continuation type) and the syntax of the new segment:

• If the segment is a method call, then its value and type is the result of invoking the matching
method in the class defining the continuation type (or a superclass or subclass of that class), as
described in Methods and Constructors (see page 57). Note that method calls in term
continuations cannot be constructors.

• If the stub is an indexed reference, then it will refer to a property in the class defining the
continuation type (or a superclass of that class). That property will either be an undimensioned
NetRexx string (type Rexx) or a dimensioned array. In either case, it is evaluated in the same
way as an indexed reference found in the stub, except that it is not necessarily in the current
class, cannot be an array constructor, and cannot result in a dimensioned type.

Version 3.01 NetRexx Language Definition 55

• If the segment is a symbol, then it refers to either a property or a method in the class defining
the continuation type (or a superclass of that class).25

The search for the property or method starts with the class defining the continuation type. If a
property name matches, it is used; if not, a method of the same name and having no arguments
(or only optional arguments) will match. If neither property nor method is found, then the same
search is applied to each of the continuation class’s superclasses in turn, starting with the class
that it extends.

As a convenient special case, if the property or method is not found, then if the segment is the
final segment of the term and is the simple symbol length and the continuation type is a
single-dimensioned array, then the segment evaluates to the size of the array. This will be a non-
negative whole number of an appropriate primitive type (or of type Rexx if there is no
appropriate type).

The final value and type of the term is the value and type determined by the evaluation of the last
segment of the continuation.

Arrays in terms

If a partially-evaluated term results in a dimensioned array (see page 77), its type is treated as type
Object so that evaluation of the term can continue. For example, in

ca=char[] "tosh"
say ca.toString()

the variable ca is an array of characters; in the expression on the second line the method toString()
of the class Object will be found.26

25 Unless parenthesis omission is disallowed by an implementation option, such as options strictargs, in which case it can
only be a property.

26 In the reference implementation, this would return an identifier for the object.

56 NetRexx Language Definition Version 3.01

Methods and Constructors
Instructions in NetRexx are grouped into methods, which are named routines that always belong to
(are part of) a class.

Methods are invoked by being referenced in a term (see page 52), which may be part of an expression
or be a clause in its own right (a method call instruction). In either case, the syntax used for a method
invocation is:

symbol([expression[,expression]...])

The symbol, which must be non-numeric, is called the name of the method. It is important to note that
the name of the method must be followed immediately by the “(”, with no blank in between, or the
construct will not be recognized as a method call (a blank operator would be assumed at that point
instead).

The expressions (separated by commas) between the parentheses are called the arguments to the
method. Each argument expression may include further method calls.

The argument expressions are evaluated in turn from left to right and the resulting values are then
passed to the method (the procedure for locating the method is described below). The method then
executes some algorithm (usually dependent on any arguments passed, though arguments are not
mandatory) and will eventually return a value. This value is then included in the original expression
just as though the entire method reference had been replaced by the name of a variable whose value is
that returned data.

For example, the substr method is provided for strings of type Rexx and could be used as:

c='abcdefghijk'
a=c.substr(3,7)
/* would set A to "cdefghi" */

Here, the value of the variable c is a string (of type Rexx). The substr (substring) method of the
Rexx class is then invoked, with arguments 3 and 7, on the value referred to by c. That is, the the
properties available to (the context of) the substr method are the properties constructed from the
literal string 'abcdefghijk'. The method returns the substring of the value, starting at the third
character and of length seven characters.

A method may have a variable number of arguments: only those required need be specified. For
example, 'ABCDEF'.substr(4) would return the string 'DEF', as the substr method will assume
that the remainder of the string is to be returned if no length is provided.

Method invocations that take no arguments may omit the (empty) parentheses in circumstances where
this would not be ambiguous. See the section on Terms (see page 52) for details.

Implementation minimum: At least 10 argument expressions should be allowed in a method call.

Method call instructions
When a clause in a method consists of just a term, and the final part of the term is a method
invocation, the clause is a method call instruction:

symbol([expression[,expression]...]);

The method is being called as a subroutine of the current method, and any returned value is discarded.
In this case (and in this case only), the method invoked need not return a value (that is, the return

Version 3.01 NetRexx Language Definition 57

instruction that ends it need not specify an expression).27

A method call instruction that is the first instruction in a constructor (see below) can only invoke the
special constructors this and super.

Method resolution (search order)
Method resolution in NetRexx proceeds as follows:

• If the method invocation is the first part (stub) of a term, then:

1. The current class is searched for the method (see below for details of searching).

2. If not found in the current class, then the superclasses of the current class are searched,
starting with the class that the current class extends.

3. If still not found, then the classes listed in the uses phrase of the class instruction are
searched for the method, which in this case must be a static method (see page 103). Each
class from the list is searched for the method, and then its superclasses are searched upwards
from the class; this process is repeated for each of the classes, in the order specified in the
list.

4. If still not found, the method invocation must be a constructor (see below) and so the method
name, which may be qualified by a package name, should match the name of a primitive
type or a known class (type). The specified class is then searched for a constructor that
matches the method invocation.

• If the method invocation is not the first part of the term, then the evaluation of the parts of the
term to the left of the method invocation will have resulted in a value (or just a type), which will
have a known type (the continuation type). Then:

1. The class that defines the continuation type is searched for the method (see below for details
of searching).

2. If not found in that class, then the superclasses of that class are searched, starting with the
class that that class extends.

If the search did not find a method, an error is reported.

If the search did find a method, that is the method which is invoked, except in one case:

◦ If the evaluation so far has resulted in a value (an object), then that value may have a type
which is a subclass of the continuation type. If, within that subclass, there is a method that
exactly overrides (see page 59) the method that was found in the search, then the method in
the subclass is invoked.

This case occurs when an object is earlier assigned to a variable of a type which is a superclass
of the type of the object. This type simplification hides the real type of the object from the
language processor, though it can be determined when the program is executed.

Searching for a method in a class proceeds as follows:

1. Candidate methods in the class are selected. To be a candidate method:

◦ the method must have the same name as the method invocation (independent of the case (see
page 48) of the letters of the name)

27 A method call instruction is equivalent to the call instruction of other languages, except that no keyword is required.

58 NetRexx Language Definition Version 3.01

◦ the method must have the same number of arguments as the method invocation (or more
arguments, provided that the remainder are shown as optional in the method definition)

◦ it must be possible to assign the result of each argument expression to the type of the
corresponding argument in the method definition (if strict type checking is in effect, the
types must match exactly).

2. If there are no candidate methods then the search is complete; the method was not found.

3. If there is just one candidate method, that method is used; the search is complete.

4. If there is more than one candidate method, the sum of the costs of the conversions (see page
64) from the type of each argument expression to the type of the corresponding argument
defined for the method is computed for each candidate method.

5. The costs of those candidates (if any) whose names match the method invocation exactly,
including in case, are compared; if one has a lower cost than all others, that method is used and
the search is complete.

6. The costs of all the candidates are compared; if one has a lower cost than all others, that method
is used and the search is complete.

7. If there remain two or more candidates with the same minimum cost, the method invocation is
ambiguous, and an error is reported.

Note: When a method is found in a class, superclasses of that class are not searched for methods, even
though a lower-cost method may exist in a superclass.

Method overriding
A method is said to exactly override a method in another class if

1. the method in the other class has the same name as the current method

2. the method in the other class is not private

3. the other class is a superclass of the current class, or is a class that the current class implements
(or is a superclass of one of those classes).

4. the number and type of the arguments of the method in the other class exactly match the number
and type of the arguments of the current method (where subsets are also checked, if either
method has optional arguments).

For example, the Rexx class includes a substr (see page 168) method, which takes from one to three
strings of type Rexx. In the class:

class mystring extends Rexx
 method substr(n=Rexx, length=Rexx)
 return this.reverse.substr(n, length)

 method substr(n=int, length=int)
 return this.reverse.substr(Rexx n, Rexx length)

the first method exactly overrides the substr method in the Rexx class, but the second does not,
because the types of the arguments do not match.

A method that exactly overrides a method is assumed to be an extension of the overridden method, to
be used in the same way. For such a method, the following rules apply:

Version 3.01 NetRexx Language Definition 59

• It must return a value of the same type as the overridden method (or none, if the overridden
method returns none).

• It must be at least as visible as the overridden routine. For example, if the overridden routine is
public then it must also be public.

• If the overridden method is static then it must also be static.

• If the overridden method is not static then it must not be static.

• If the underlying implementation checks exceptions (see page 154), only those checked
exceptions that are signalled by the overridden method may be left uncaught in the current
method.

Constructor methods
As described above, methods are usually invoked in the context of an existing value or type. A special
kind of method, called a constructor method, is used to actually create a value of a given type (an
object).

Constructor methods always have the same short name as the class in which they are found, and
construct and return a value of the type defined by that class (sometimes known as an instance of that
class). If the class is part of a package, then the constructor call may be qualified by the package name.

Example constructors:

File('Dan.yr.Ogof')
java.io.File('Speleogroup.letter')
Rexx('some words')
netrexx.lang.Rexx(1)

There will always be at least one constructor if values can be created for a class. NetRexx will add a
default public constructor that takes no arguments if no constructors are provided, unless the
components of the class are all static or constant, or the class is an interface class.

All constructors follow the same rules as other methods, and in addition:

1. Constructor calls always include parentheses in the syntax, even if no arguments are supplied.
This distinguishes them from a reference to the type of the same name.

2. Constructors must call a constructor of their superclass (the class they extend) before they carry
out any initialization of their own. This is so any initialization carried out by the superclass
takes place, and at the appropriate moment. Only after this call is complete can they make any
reference to the special words this or super (see page 133).

Therefore, the first instruction in a constructor must be either a call to the superclass, using the
special constructor super() (with optional arguments), or a call to to another constructor in the
same class, using the special constructor this() (with optional arguments). In the latter case,
eventually a constructor that explicitly calls super() will be invoked and the chain of local
constructor calls ends.

As a convenience, NetRexx will add a default call to super(), with no arguments, if the first
instruction in a constructor is not a call to this() or super().

3. The properties of a constructed value are initialized, in the order given in the program, after the
call to super() (whether implicit or explicit).

4. By definition, constructors create a value (object) whose type is defined by the current class,

60 NetRexx Language Definition Version 3.01

and then return that value for use. Therefore, the returns keyword on the method instruction
(see page 101) that introduces the constructor is optional (if given, the type specified must be
that of the class). Similarly, the only possible forms of the return instruction used in a
constructor are either “return this;”, which returns the value that has just been constructed,
or just “return;”, in which case, the “this” is assumed (this form will be assumed at the end
of a method, as usual, if necessary).

Here is an example of a class with two constructors, showing the use of this() and super(), and
taking advantage of some of the assumptions:

class MyChars extends SomeClass

 properties private
 /* the data 'in' the object */
 value=char[]

 /* construct the object from a char array */
 method MyChars(array=char[])
 /* initialize superclass */
 super()
 value=array -- save the value

 /* construct the object from a String */
 method MyChars(s=String)
 /* convert to char[] and use the above */
 this(s.toCharArray())

Objects of type MyChars could then be created thus:

myvar=MyChars("From a string")

or by using an argument that has type char[].

Version 3.01 NetRexx Language Definition 61

Type conversions
As described in the section on Types and classes (see page 50), all values that are manipulated in
NetRexx have an associated type. On occasion, a value involved in some operation may have a
different type than is needed, and in this case conversion of a value from one type to another is
necessary.

NetRexx considerably simplifies the task of programming, without losing robustness, by making many
such conversions automatic. It will automatically convert values providing that there is no loss of
information caused by the automatic conversion (or if there is, an exception would be raised).

Conversions can also be made explicit by concatenating a type (see page 68) to a value and in this case
less robust conversions (sometimes known as casts) may be effected. See below for details of the
permitted automatic and explicit conversions.

Almost all conversions carry some risk of failure, or have a performance cost, and so it is expected
that implementations will provide options to either report costly conversions or require that
programmers make all conversions explicit.28 Such options might be recommended for certain critical
programming tasks, but are not necessary for general programming.

Permitted automatic conversions

In general, the semantics of a type is unknown, and so conversion (from a source type to a target type)
is only possible in the following cases:

• The target type and the source type are identical (the trivial case).

• The target type is a superclass of the source type, or is an interface class implemented by the
source type. This is called type simplification, and in this case the value is not altered, no
information is lost, and an explicit conversion may be used later to revert the value to its
original type.

• The source type has a dimension, and the target type is Object.

• The source type is null and the target type is not primitive.

• The target and source types have known semantics (that is, they are “well-known” to the
implementation) and the conversion can be effected without loss of information (other than
knowledge of the original type). These are called well-known conversions.

Necessarily, the well-known conversions are implementation-dependent, in that they depend on the
standard classes for the implementation and on the primitive types supported (if any). Equally, it is this
automatic conversion between strings and the primitive types of an implementation that offer the
greatest simplifications of NetRexx programming.

For example, if the implementation supported an int binary type (perhaps a 32-bit integer) then this
can safely be converted to a NetRexx string (of type Rexx). Hence a value of type int can be added to
a number which is a NetRexx string (resulting in a NetRexx string) without concern over the
difference in the types of the two terms used in the operation.

Conversely, converting a long integer to a shorter one without checking for truncation of significant
digits could cause a loss of information and would not be permitted.

28 In the reference implementation, options strictassign may be used to disallow automatic conversions.

62 NetRexx Language Definition Version 3.01

In the reference implementation, the semantics of each of the following types is known to the language
processor (the first four are all string types, and the remainder are known as binary numbers):

• netrexx.lang.Rexx – the NetRexx string class

• java.lang.String – the Java string class

• char – the Java primitive which represents a single character

• char[] – an array of chars

• boolean – a single-bit primitive

• byte, short, int, long, – signed integer primitives (8, 16, 32, or 64 bits)

• float, double – floating-point primitives (32 or 64 bits)

Under the rules described above, the following well-known conversions are permitted:

• Rexx to binary number, char[], String, or char

• String to binary number, char[], Rexx, or char

• char to binary number, char[], String, or Rexx

• char[] to binary number, Rexx, String, or char

• binary number to Rexx, String, char[], or char

• binary number to binary number (if no loss of information can take place – no sign, high order
digits, decimal part, or exponent information would be lost)

Notes:

1. Some of the conversions can cause a run-time error (exception), as when a string represents a
number that is too large for an int and a conversion to int is attempted, or when a string that
does not contain exactly one character is converted to a char.

2. The boolean primitive is treated as a binary number that may only take the values 0 or 1. A
boolean may therefore be converted to any binary number type, as well as any of the string (or
char) types, as the character “0” or “1”. Similarly, any binary number or string can be
converted to boolean (and must have a value of 0 or 1 for the conversion to succeed).

3. The char type is a single-character string (it is not a number that represents the encoding of the
character).

Permitted explicit conversions

Explicit conversions are permitted for all permitted automatic conversions and, in addition, when:

• The target type is a subclass of the source type, or implements the source type. This conversion
will fail if the value being converted was not originally of the target type (or a subclass of the
target type).

• Both the source and target types are primitive and (depending on the implementation) the
conversion may fail or truncate information.

• The target type is Rexx or a well-known string type (all values have an explicit string
representation).

Version 3.01 NetRexx Language Definition 63

Costs of conversions

All conversions are considered to have a cost, and, for permitted automatic conversions, these costs
are used to select a method for execution when several possibilities arise, using the algorithm
described in Methods and Constructors (see page 58).

For permitted automatic conversions, the cost of a conversion from a source type to a target type will
range from zero through some arbitrary positive value, constrained by the following rules:

• The cost is zero only if the source and target types are the same, or if the source type is null
and the target type is not primitive.

• Conversions from a given primitive source type to different primitive target types should have
different costs. For example, conversion of an 8-bit number to a 64-bit number might cost more
than conversion of a 8-bit number to a 32-bit number.

• Conversions that may require the creation of a new object cost more than those that can never
require the creation of a new object.

• Conversions that may fail (raise an exception) cost more than those that may require the
creation of an object but can never fail.

Within these constraints, exact costs are arbitrary, and (because they mostly involve implementation-
dependent primitive types) are necessarily implementation-dependent. The intent is that the “best
performance” method be selected when there is a possibility of more than one.

64 NetRexx Language Definition Version 3.01

Expressions and Operators
Many clauses can include expressions. Expressions in NetRexx are a general mechanism for
combining one or more data items in various ways to produce a result, usually different from the
original data.

Expressions consist of one or more terms (see page 52), such as literal strings, symbols, method calls,
or sub-expressions, and zero or more operators that denote operations to be carried out on terms. Most
operators act on two terms, and there will be at least one of these dyadic operators between every pair
of terms.29 There are also prefix (monadic) operators, that act on the term that is immediately to the
right of the operator. There may be one or more prefix operators to the left of any term, provided that
adjacent prefix operators are different.

Evaluation of an expression is left to right, modified by parentheses and by operator precedence (see
page 69) in the usual “algebraic” manner. Expressions are wholly evaluated, except when an error
occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate and its value (and the type of that
value) are determined.

The result of any operation is also a value, which may be a character string, a data object of some
other type, or (in special circumstances) a binary representation of a character or number. The type of
the result is well-defined, and depends on the types of any terms involved in an operation and the
operation carried out. Consequently, the result of evaluating any expression is a value which has a
known type.

Note that the NetRexx language imposes no restriction on the maximum size of results, but there will
usually be some practical limitation dependent upon the amount of storage and other resources
available during execution.

Operators
The operators in NetRexx are constructed from one or more operator characters (see page 47). Blanks
(and comments) adjacent to operator characters have no effect on the operator, and so the operators
constructed from more than one character may have embedded blanks and comments. In addition,
blank characters, where they occur between tokens within expressions but are not adjacent to another
operator, also act as an operator.

The operators may be subdivided into five groups: concatenation, arithmetic, comparative, logical, and
type operators. The first four groups work with terms whose type is “well-known” (that is, strings, or
known types that can be be converted to strings without information loss). The operations in these
groups are defined in terms of their operations on strings.

Concatenation The concatenation operators are used to combine two strings to form one string by
appending the second string to the right-hand end of the first string. The
concatenation may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between.

|| Concatenate without an intervening blank.

(abuttal) Concatenate without an intervening blank.

Concatenation without a blank may be forced by using the || operator, but it is useful

29 One operator, direct concatenation, is implied if two terms abut (see page 65).

Version 3.01 NetRexx Language Definition 65

to remember that when two terms are adjacent and are not separated by an operator,30
they will be concatenated in the same way. This is the abuttal operation. For example,
if the variable Total had the value '37.4', then Total'%' would evaluate to
'37.4%'.

Values that are not strings are first converted to strings before concatenation.

Arithmetic Character strings that are numbers (see page 69) may be combined using the
arithmetic operators:

+ Add.

- Subtract.

* Multiply.

/ Divide.

% Integer divide.
 Divide and return the integer part of the result.

// Remainder.
 Divide and return the remainder (this is not modulo, as the result may
be negative).

** Power.
 Raise a number to a whole number power.

Prefix - Same as the subtraction: “0-number”.

Prefix + Same as the addition: “0+number”.

The section on Numbers and Arithmetic (see page 142) describes numeric precision,
the format of valid numbers, and the operation rules for arithmetic. Note that if an
arithmetic result is shown in exponential notation, then it is likely that rounding has
occurred.

In binary classes (see page 83), the arithmetic operators will use binary arithmetic if
both terms involved have values which are binary numbers. The section on Binary
values and operations (see page 151) describes binary arithmetic.

Comparative The comparative operators compare two terms and return the value '1' if the result
of the comparison is true, or '0' otherwise. Two sets of operators are defined: the
strict comparisons and the normal comparisons.

The strict comparative operators all have one of the characters defining the operator
doubled. The “==”, and “\==” operators test for strict equality or inequality between
two strings. Two strings must be identical to be considered strictly equal. Similarly,
the other strict comparative operators (such as “>>” or “<<”) carry out a simple left-
to-right character-by-character comparison, with no padding of either of the strings
being compared. If one string is shorter than, and is a leading sub-string of, another
then it is smaller (less than) the other. Strict comparison operations are case sensitive,
and the exact collating order may depend on the character set used for the
implementation.31

30 This can occur when the terms are syntactically distinct (such as a literal string and a symbol).
31 For example, in an ASCII or Unicode environment, the digits 0-9 are lower than the alphabetics, and lowercase

alphabetics are higher than uppercase alphabetics. In an EBCDIC environment, lowercase alphabetics precede uppercase,

66 NetRexx Language Definition Version 3.01

For all the other comparative operators, if both the terms involved are numeric,32 a
numeric comparison (in which leading zeros are ignored, etc.) is effected; otherwise,
both terms are treated as character strings. For this character string comparison,
leading and trailing blanks are ignored, and then the shorter string is padded with
blanks on the right. The character comparison operation takes place from left to right,
and is not case sensitive (that is, “Yes” compares equal to “yes”). As for strict
comparisons, the exact collating order may depend on the character set used for the
implementation.

The comparative operators return true ('1') if the terms are:

Normal comparative operators:

= Equal (numerically or when padded, etc.).

\= Not equal (inverse of =).

> Greater than.

< Less than.

><, <> Greater than or less than (same as “Not equal”).

>=, \< Greater than or equal to, not less than.

<=, \> Less than or equal to, not greater than.

Strict comparative operators:

== Strictly equal (identical).

\== Strictly not equal (inverse of ==).

>> Strictly greater than.

<< Strictly less than.

>>=, \<< Strictly greater than or equal to, strictly not less than.

<<=, \>> Strictly less than or equal to, strictly not greater than.

The equal and not equal operators (“=”, “==”, “\=”, and “\==”) may be used to
compare two objects which are not strings for equality, if the implementation allows
them to be compared (usually they will need to be of the same type). The strict
operators test whether the two objects are in fact the same object,33 and the normal
operators may provide a more relaxed comparison, if available to the
implementation.34

In binary classes (see page 83), all the comparative operators will use binary
arithmetic to effect the comparison if both terms involved have values which are
binary numbers. In this case, there is no distinction between the strict and the normal
comparative operators. The section on Binary values and operations (see page 151)
describes the binary arithmetic used for comparisons.

but the digits are higher than all the alphabetics.
32 That is, if they can be compared numerically without error.
33 Note that two distinct objects compared in this way may contain values (properties) that are identical, yet they will not

compare equal as they are not the same object.
34 In the reference implementation, the equals method is used for normal comparisons. Where not provided by a type, this is

implemented by the Object class as a strict comparison.

Version 3.01 NetRexx Language Definition 67

Logical
(Boolean)

A character string is taken to have the value “false” if it is '0', and “true” if it is '1'.
The logical operators take one or two such values (values other than '0' or '1' are
not allowed) and return '0' or '1' as appropriate:

& And.
 Returns 1 if both terms are true.

| Inclusive or.
 Returns 1 if either term is true.

&& Exclusive or.
 Returns 1 if either (but not both) is true.

Prefix \ Logical not.
 Negates; 1 becomes 0 and vice versa.

In binary classes (see page 83), the logical operators will act on all bits in the values if
both terms involved have values which are boolean or integers. The section on Binary
values and operations (see page 151) describes this in more detail.

Type Several of the operators already described can be used to carry out operations related
to types. Specifically:

• Any of the concatenation operators may be used for type concatenation, which
concatenates a type to a value. All three operators (blank, “||”, and abuttal)
have the same effect, which is to convert (see page 62)35 the value to the type
specified (if the conversion is not possible, an error is reported or an exception
is signalled). The type must be on the left-hand side of the operator.

Examples:

String "abc"
int (a+1)
long 1
Exception e
InputStream myfile

• A type on the left hand side of an operator that could be a prefix operator (+, -,
or \) is assumed to imply type concatenation after the prefix operator is applied
to the right-hand operand, as though an explicit concatenation operator were
placed before the prefix operator.

For example:

x=int -y

means that -y is evaluated, and then the result is converted to int before being
assigned to x.36

• The “less than or equal” and the “greater than or equal” operators (“<=” and
“>=”) may be used with a type on either side of the operator, or on both sides.
In this case, they test whether a value or type is a subclass of, or is the same as,
a type, or vice versa.

Examples:

if i<=Object then say 'I is an Object'

35 This is sometimes known as casting
36 This could also have been written x=int (-y).

68 NetRexx Language Definition Version 3.01

if String>=i then say 'I is a String'
if String<=Object then say 'String is an Object'

The precedence of these operators is not affected by their being used with types as
operands.

Numbers
The arithmetic operators above require that both terms involved be numbers; similarly some of the
comparative operators carry out a numeric comparison if both terms are numbers.

Numbers are introduced and defined in detail in the section on Numbers and arithmetic (see page
142). In summary, numbers are character strings consisting of one or more decimal digits optionally
prefixed by a plus or minus sign, and optionally including a single period (“.”) which then represents
a decimal point. A number may also have a power of ten suffixed in conventional exponential notation:
an “E” (uppercase or lowercase) followed by a plus or minus sign then followed by one or more
decimal digits defining the power of ten.

Numbers may have leading blanks (before and/or after the sign, if any) and may have trailing blanks.
Blanks may not be embedded among the digits of a number or in the exponential part.

Examples:

'12'
'-17.9'
'127.0650'
'73e+128'
' + 7.9E-5 '
'00E+000'

Note that the sequence -17.9 (without quotes) in an expression is not simply a number. It is a minus
operator (which may be prefix minus if there is no term to the left of it) followed by a positive number.
The result of the operation will be a number.

A whole number (see page 149) in NetRexx is a number that has a zero (or no) decimal part.

Implementation minimum: All implementations must support 9-digit arithmetic. In unavoidable
cases this may be limited to integers only, and in this case the divide operator (“/”) must not be
supported. If exponents are supported in an implementation, then they must be supported for
exponents whose absolute value is at least as large as the largest number that can be expressed as an
exact integer in default precision, i.e., 999999999.

Parentheses and operator precedence
Expression evaluation is from left to right; this is modified by parentheses and by operator precedence:

• When parentheses are encountered, other than those that identify method calls (see page 57), the
entire sub-expression delimited by the parentheses is evaluated immediately when the term is
required.

• When the sequence

term1 operator1 term2 operator2 term3

is encountered, and operator2 has a higher precedence than operator1, then the operation
(term2 operator2 term3) is evaluated first. The same rule is applied repeatedly as
necessary.

Version 3.01 NetRexx Language Definition 69

Note, however, that individual terms are evaluated from left to right in the expression (that is, as
soon as they are encountered). It is only the order of operations that is affected by the
precedence rules.

For example, “*” (multiply) has a higher precedence than “+” (add), so 3+2*5 will evaluate to 13
(rather than the 25 that would result if strict left to right evaluation occurred). To force the addition to
be performed before the multiplication the expression would be written (3+2)*5, where the first three
tokens have been formed into a sub-expression by the addition of parentheses.

The order of precedence of the operators is (highest at the top):

Prefix operators + - \

Power operator **

Multiplication and division * / % //

Addition and subtraction + -

Concatenation (blank) || (abuttal)

Comparative operators = == > < <= >= << \>> etc.

And &

Or, exclusive or | &&

If, for example, the symbol a is a variable whose value is '3', and day is a variable with the value
'Monday', then:

a+5 == '8'
a-4*2 == '-5'
a/2 == '1.5'
a%2 == '1'
0.5**2 == '0.25'
(a+1)>7 == '0' /* that is, False */
' '='' == '1' /* that is, True */
' '=='' == '0' /* that is, False */
' '\=='' == '1' /* that is, True */
(a+1)*3=12 == '1' /* that is, True */
'077'>'11' == '1' /* that is, True */
'077'>>'11' == '0' /* that is, False */
'abc'>>'ab' == '1' /* that is, True */
'If it is' day == 'If it is Monday'
day.substr(2,3) == 'ond'
'!'day'!' == '!Monday!'

Note: The NetRexx order of precedence usually causes no difficulty, as it is the same as in
conventional algebra and other computer languages. There are two differences from some common
notations; the prefix minus operator always has a higher priority than the power operator, and power
operators (like other operators) are evaluated left-to-right. Thus

-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

These rules were found to match the expectations of the majority of users when the Rexx language
was first designed, and NetRexx follows the same rules.

70 NetRexx Language Definition Version 3.01

Clauses and Instructions
Clauses (see page 44) are recognized, and can usefully be classified, in the following order:

Null clauses A clause that is empty or comprises only blanks, comments, and continuations is a
null clause and is completely ignored by NetRexx (except that if it includes a
comment it will be traced, if reached during execution).

Note: A null clause is not an instruction, so (for example) putting an extra semicolon
after the then or else in an if instruction is not equivalent to putting a dummy
instruction (as it would be in C or PL/I). The nop instruction is provided for this
purpose.

Assignments Single clauses within a class and of the form term=expression; are instructions
known as assignments (see page 72). An assignment gives a variable, identified by the
term, a type or a new value.

In just one context, where property assignments are expected (before the first method
in a class), the “=” and the expression may be omitted; in this case, the term (and
hence the entire clause) will always be a simple non-numeric symbol which names
the property

Method call
instructions

A method call instruction (see page 57) is a clause within a method that comprises a
single term that is, or ends in, a method invocation.

Keyword
instructions

A keyword instruction consists of one or more clauses, the first of which starts with a
non-numeric symbol which is not the name of a variable or property in the current
class (if any) and is immediately followed by a blank, a semicolon (which may be
implied by the end of a line), a literal string, or an operator (other than “=”, which
would imply an assignment). This symbol, the keyword, identifies the instruction.

Keyword instructions control the external interfaces, the flow of control, and so on.
Some keyword instructions (see page 80) (do, if, loop, or select) can include nested
instructions.

Version 3.01 NetRexx Language Definition 71

Assignments and Variables
A variable is a named item whose value may be changed during the course of execution of a NetRexx
program. The process of changing the value of a variable is called assigning a new value to it.

Each variable has an associated type, which cannot change during the execution of a program;
therefore, the values assigned to a given variable must always have a type that can safely be assigned
to that variable.

Variables may be assigned a new value by the method or parse instructions, but the most common
way of changing the value of a variable is by using an assignment instruction. Any clause within a
class and of the form:

assignment;

where assignment is:

 term=expression

is taken to be an assignment instruction. The result of the expression becomes the new value of the
variable named by the term to the left of the equals sign. When the term is simply a symbol, this is
called the name of the variable.

Example:

/* Next line gives FRED the value 'Frederic' */
fred='Frederic'

The symbol naming the variable cannot begin with a digit (0-9).37

Within a NetRexx program, variable names are not case-sensitive (for example, the names fred,
Fred, and FRED refer to the same variable). Where public names are exposed (for example, the names
of properties, classes, and methods, and in cross-reference listings) the case used for the name will be
that used when the name was first introduced (“first” is determined statically by position in a program
rather than dynamically).

Similarly, the type of a NetRexx variable is determined by the type of the value of the expression that
is first assigned to it.38 For subsequent assignments, it is an error to assign a value to a variable with a
type mismatch unless the language processor can determine that the value can be assigned safely to the
type of the variable.

In practice, this means that the types must match exactly, be a simplification, or both be “well-known”
types such as Rexx, String, int, etc., for which safe conversions are defined. The possibilities are
described in the section on Conversions (see page 62).39

37 Without this restriction on the first character of a variable name, it would be possible to redefine a number, in that for
example the assignment “3=4;” would give a variable called “3” the value '4'.

38 Since NetRexx infers the type of a variable from usage, substantial programs can be written without introducing explicit
type declarations, although these are allowed.

39 Implementations may provide for a stricter rule for assignment (where the types must be identical), controlled by the
options instruction.

72 NetRexx Language Definition Version 3.01

For example, if there are types (classes) called ibm.util.hex, RunKnown, and Window, then:

hexy=ibm.util.hex(3) -- 'hexy' has type 'ibm.util.hex'
rk=RunKnown() -- 'rk' has type 'RunKnown'
fred=Window(10, 20) -- 'fred' has type 'Window'
s="Los Lagos" -- 's' has type 'Rexx'
j=5 -- 'j' has type 'Rexx'

The first three examples invoke the constructor method for the type to construct a value (an object). A
constructor method always has the same name as the class to which it belongs, and returns a new value
of that type. Constructor methods are described in detail in Methods and Constructors (see page 57).

The last two examples above illustrate that, by default, the types of literal strings and numbers are
NetRexx strings (type Rexx) and so variables tend to be of type Rexx. This simplifies the language
and makes it easy to learn, as many useful programs can be written solely using the powerful Rexx
type. Potentially more efficient (though less human-oriented) primitive or built-in types for literals will
be used in binary classes (see page 83).

If the examples above were in a binary class, then, in the reference implementation, the types of s and
j would have been java.lang.String and int respectively.

A variable may be introduced (“declared”) without giving it an initial value by simply assigning a type
to it:

i=int
r=Rexx
f=java.io.File

Here, the expression to the right of the “=” simply evaluates to a type with no value.

The use and scope of variables

NetRexx variables all follow the same rules of assignment, but are used in different contexts. These
are:

Properties Variables which name the values (the data) owned by an object of the type defined by
the class are called properties. When an object is constructed by the class, its
properties are created and are initialized to either a default value (null or, for
variables of primitive type, an implementation-defined value, typically 0) or to a
value provided by the programmer.

The attributes of properties can be changed by the properties instruction (see page
115). For example, properties may also be constant, which means that they are
initialized when the class is first loaded and do not change thereafter.

Method
arguments

When a method is invoked, arguments may be passed to it. These method arguments
are assigned to the variables named on the method instruction (see page 101) that
introduces the method.

Local
variables

Variables that are known only within a method are called local variables; each time a
method is invoked a distinct set of local variables is available. Local variables are
normally given an initial value by the programmer. If they are not, they are initialized
to a default value (null or, for variables of primitive type, an implementation-defined
value, typically 0).

In order for types to be determined and type-checking to be possible at “compile-time”, and easily
determined by inspection, the use and type of every variable is determined by its position in the

Version 3.01 NetRexx Language Definition 73

program, not by the order in which assignments are executed. That is, variable typing is static.

The visibility of a variable depends on its use. Properties are visible to all methods in a class; method
arguments and local variables are only visible within the method in which they appear. In particular:

• Within a class, properties have unique names (they cannot be overridden by method arguments
or by local variables within methods); this avoids error-prone ambiguity.

• Within a method, a method argument acts like a local variable (that is, it is in the same name-
space as local variables, and can be assigned new values); it can be considered to be a local
variable that is assigned a value just before the body of the method is executed. There cannot be
both a method argument and a local variable in a method with the same name.

• Within methods, variables can take only one type, the type assigned to them when first
encountered in the method (in a strict “physical” sense, that is, as parsed from top to bottom of
the program and from left to right on each line). Since methods tend to be small, there is no
local scoping of variables inside the constructs within a method.40

Thus, in this example:

method iszero(x)
 if x=0 then qualifier='is zero'
 else qualifier='is not zero'
 say 'The argument' qualifier'.'

the variable qualifier is known throughout the method and hence has a known type and
value when the say instruction is executed.

To summarize: a symbol that names a variable in the current class either refers to a property (and in
any use of it within the class refers to that property), or it refers to a variable that is unique within a
method (and any use of the name within that method refers to the same variable).

Note: A variable is just a name, or “handle” for a value. It is possible for more than one variable to
refer to the same value, as in the program:

first='A string'
second=first

Here, both variables refer to the same value. If that value is changeable then a change to the value
referred to by one of the variable names would also be seen if the value is referred to by the other. For
example, sub-values of a NetRexx string can be changed, using Indexed references (see page 76), so a
change to a sub-value of first would also be seen in an identical indexed reference to second.

Terms on the left of assignments

In an assignment instruction, the term to the left of the equals sign is most commonly a simple non-
numeric symbol, which always names a variable in the current class. The other possibilities, as seen in
the example below, are:

1. The term is an indexed reference (see page 76), to an existing variable that refers to a string of
type Rexx or an array (see page 77). The variable may be in the current class, or be a property in
a class named in the uses phrase of the class instruction for the current class.

2. The term is a compound term (see page 52) that ultimately refers to a property (see above) in
some class (which may be the current class). This property cannot be a constant.

40 Unlike the block scoping of PL/I, C, or Java.

74 NetRexx Language Definition Version 3.01

Examples:

r=Rexx ''
r['foo']='?' -- indexed string assignment
s=String[3]
s[0]='test' -- array assignment
Sample.value=1 -- property assignment
this.value=1 -- property assignment
super.value=1 -- property assignment

The last two examples show assignments to a property in the current class or in a superclass of the
current class, respectively. Note that references to properties in other classes must alway be qualified
in some way (for example, by the prefix super.). The use of the prefix this. for properties in the
current class is optional.

Version 3.01 NetRexx Language Definition 75

Indexed strings and Arrays
Any NetRexx string (that is, a value of type Rexx), has the ability to have sub-values, values (also of
type Rexx) which are associated with the original string and are indexed by an index string which
identifies the sub-value. Any string with such sub-values is known as an indexed string.

The sub-values of a NetRexx string are accessed using indexed references, where the name of a
variable of type Rexx is followed immediately by square brackets enclosing one or more expressions
separated by commas:41

symbol'['[expression[, expression]...]']'

It is important to note that the symbol that names the variable must be followed immediately by the
“[”, with no blank in between, or the construct will not be recognized as an indexed reference.

The expressions (separated by commas) between the brackets are called the indexes to the string.
These index expressions are evaluated in turn from left to right, and each must evaluate to a value is of
type Rexx or that can be converted to type Rexx.

The resulting index strings are taken “as-is” – that is, they must match exactly in content, case, and
length for a reference to find a previously-set item. They may have any length (including the null
string) and value (they are not constrained to be just those strings which are numbers, for example).

If a reference does not find a sub-value, then a copy of the non-indexed value of the variable is used.

Example:

surname='Unknown' -- default value
surname['Fred']='Bloggs'
surname['Davy']='Jones'
try='Fred'
say surname[try] surname['Bert']

would say “Bloggs Unknown”.

When multiple indexes are used, they indicate accessing a hierarchy of strings. A single NetRexx
string has a single set of indexes and subvalues associated with it. The sub-values, however, are also
NetRexx strings, and so may in turn have indexes and sub-values. When more than one index is
specified in an indexed reference, the indexes are applied in turn from left to right to each retrieved
sub-value.

For example, in the sequence:

x='?'
x['foo', 'bar']='OK'
say x['foo', 'bar']
y=x['foo']
say y['bar']

both say instructions would display the string “OK”.

Indexed strings may be used to set up “associative arrays”, or dictionaries, in which the subscript is
not necessarily numeric, and thus offer great scope for the creative programmer. A useful application is
to set up a variable in which the subscripts are taken from the value of one or more variables, so
effecting a form of associative (content addressable) memory.

41 The notations '[' and ']' indicate square brackets appearing in the NetRexx program.

76 NetRexx Language Definition Version 3.01

Notes:

1. A variable of type Rexx must have been assigned a value before indexing is used on it. This is
the value that is used as the default value whenever an indexed reference finds no sub-value.

2. The indexes, and hence the sub-values, of a Rexx object can be retrieved in turn using the over
(see page 97) keyword of the loop instruction.

3. The exists method (see page 163) of the Rexx class may be used to test whether an indexed
reference has an explicitly-set value.

4. Assigning null to an indexed reference (for example, the assignment switch[7]=null;)
drops the sub-value; until set to a new value, any reference to the sub-value (including use of
the exists method) will return the same result as when it had never been set.

Arrays
In addition to indexed strings, NetRexx also includes the concept of fixed-size arrays, which may be
used for indexing values of any type (including strings).

Arrays are used with the same syntax and in the same manner as indexed strings, but with important
differences that allow for compact implementations and access to equivalent data structures
constructed using other programming languages:

1. The indexes for arrays must be whole numbers that are zero or positive. There will usually be an
implementation restriction on the maximum value of the index (typically 999999999 or higher).

2. The elements of an array are considered to be ordered; the first element has index 0, the second
1, and so on.

3. An array is of fixed size; it must be constructed before use.

4. Variables that are assigned arrays can only be assigned arrays (of the same dimension, see
below) in the future. That is, being an array changes the type of a value; it becomes a
dimensioned type (see page 51).

Array references use the NetRexx indexed reference syntax defined above. The same syntax is used
for constructing arrays, except that the symbol before the left bracket describes a type (and hence may
be qualified by a package name). The expression or expressions between the brackets indicate the size
of the array in each dimension, and must be a positive whole number or zero:

arg=String[4] -- makes an array for four Strings
arg=java.io.File[4] -- makes an array for four Files
i=int[3] -- makes an array for three 'int's

(Another way of describing this is that array constructors look just like other object constructors,
except that brackets are used instead of parentheses.)

Once an array has been constructed, its elements can be referred to using brackets and expressions, as
before:

i[2]=3 -- sets the '2'-indexed value of 'i'
j=i[2] -- sets 'j' to the '2'-indexed value of 'i'

Regular multiple-dimensioned arrays may be constructed and referenced by using multiple
expressions within the brackets:

Version 3.01 NetRexx Language Definition 77

i=int[2,3] -- makes a 2x3 array of 'int' type objects
i[1,2]=3 -- sets the '1,2'-indexed value of 'i'
j=i[1,2] -- sets 'j' to the '1,2'-indexed value of 'i'

As with indexed strings, when multiple indexes are used, they indicate accessing a hierarchy of arrays
(the underlying model is therefore of a hierarchy of single-dimensioned arrays). When more than one
index is specified in an indexed reference to an array, the indexes are applied in turn from left to right
to each array.

As described in the section on Types (see page 50), the type of a variable that refers to an array can be
set (declared) by assignment of the type with array notation that indicates the dimension of an array
without any sizes:

k=int[] -- one-dimensional array of 'int' objects
m=float[,,] -- 3-dimensional array of 'float' objects

The same syntax is also used when describing an array type in the arguments of a method instruction
or when converting types. For example, after:

gg=char[] "Horse"

the variable gg has as its value an array of type char[] containing the five characters H, o, r, s, and
e.

Array initializers

An array initializer is a simple term which is recognized if it does not immediately follow (abut) a
symbol, and has the form42

'['expression[,expression]...']'

An array initializer therefore comprises a list of one or more expressions, separated by commas, within
brackets. When an array initializer is evaluated, the expressions are evaluated in turn from left to
right, and all must result in a value. An array is then constructed, with a number of elements equal to
the number of expressions in the list, with each element initialized by being assigned the result of the
corresponding expression.

The type of the array is derived by adding one dimension to the type of the result of the first
expression in the list, where the type of that expression is determined using the same rules as are used
to select the type of a variable when it is first assigned a value (see page 72). All the other expressions
in the list must have types that could be assigned to the chosen type without error.

For example, in

var1=['aa', 'bb', 'cc']
var2=[char 'a', 'b', 'c']
var3=[String 'a', 'bb', 'c']
var4=[1, 2, 3, 4, 5, 6]
var5=[[1,2], [3,4]]

the types of the variables would be Rexx[], char[], String[], Rexx[], and Rexx[,] respectively.
In a binary class in the reference implementation, the types would be String[], char[], String[],
int[], and int[,].

Array initializers are most useful for initializing properties and variables, but like other simple terms,
they may start a compound term.

42 The notations '[' and ']' indicate square brackets appearing in the NetRexx program.

78 NetRexx Language Definition Version 3.01

So, for example

say [1,1,1,1].length

would display 4.

Note that an array of length zero cannot be constructed with an array initializer, as its type would be
undefined. An explicitly typed array constructor (for example, int[0]) must be used.

Version 3.01 NetRexx Language Definition 79

Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies
the instruction. Some keyword instructions affect the flow of control; the remainder just provide
services to the programmer. Some keyword instructions (do, if, loop, or select) can include nested
instructions. Appendix A (see page 173) includes an example of a NetRexx program using many of the
instructions available.

As can be deduced from the syntax rules described earlier, a keyword instruction is recognized only if
its keyword is the first token in a clause, and if the second token is not an “=” character (implying an
assignment). It would also not be recognized if the second token started with “(”, “[”, or “.”
(implying that the first token starts a term).

Further, if a current local variable, method argument, or property has the same name as a keyword then
the keyword will not be recognized. This important rule allows NetRexx to be extended with new
keywords in the future without invalidating existing programs.

Thus, for example, this sequence in a program with no say variable:

say 'Hello'
say('1')
say=3
say 'Hello'

would be a say instruction, a call to some say method, an assignment to a say variable, and an error.

In NetRexx, therefore, keywords are not reserved; they may be used as the names of variables (though
this is not recommended, where known in advance).

Certain other keywords, known as sub-keywords, may be known within the clauses of individual
instructions – for example, the symbols to and while in the loop instruction. Again, these are not
reserved; if they had been used as names of variables, they would not be recognized as sub-keywords.

Blanks adjacent to keywords have no effect other than that of separating the keyword from the
subsequent token. For example, this applies to the blanks next to the sub-keyword while in

loop while a=3

Here at least one blank was required to separate the symbols forming the keywords and the variable
name, a. However the blank following the while is not necessary in

loop while 'Me'=a

though it does aid readability.

80 NetRexx Language Definition Version 3.01

Class instruction
class name [visibility] [modifier] [binary] [deprecated]
 [extends classname]
 [uses useslist]
 [implements interfacelist];

where visibility is one of:

 private
 public
 shared

and modifier is one of:

 abstract
 adapter
 final
 interface

and useslist and interfacelist are lists of one or more classnames, separated by commas.

The class instruction is used to introduce a class, as described in the sections Types and Classes (see
page 50) and Program structure (see page 127), and define its attributes. The class must be given a
name, which must be different from the name of any other classes in the program. The name, which
must be a non-numeric symbol, is known as the short name of the class.

A classname can be either the short name of a class (if that is unambiguous in the context in which it is
used), or the qualified name of the class – the name of the class prefixed by a package name and a
period, as described under the package instruction (see page 113).

The body of the class consists of all clauses following the class instruction (if any) until the next class
instruction or the end of the program.

The visibility, modifier, and binary keywords, and the extends, uses, and implements phrases, may
appear in any order.

Visibility

Classes may be public, private, or shared:

• A public class is visible to (that is, may be used by) all other classes.

• A private class is visible only within same program and to classes in the same package (see
page 113).

• A shared class is also visible only within same program and to classes in the same package.43

A program may have only one public class, and if no class is marked public then the first is assumed to
be public (unless it is explicitly marked private).

43 The shared keyword on the class instruction means exactly the same as the keyword private, and is accepted for
consistency with the other meanings of shared.

Version 3.01 NetRexx Language Definition 81

Modifier

Most classes are collections of data (properties) and the procedures that can act on that data (methods);
they completely implement a datatype (type), and are permitted to be subclassed. These are called
standard classes. The modifier keywords indicate that the class is not a standard class – it is special in
some way. Only one of the following modifier keywords is allowed:

abstract An abstract class does not completely implement a datatype; one or more of the methods
that it defines (or which it inherits from classes it extends or implements) is abstract –
that is, the name of the method and the types of its arguments are defined, but no
instructions to implement the method are provided.

Since some methods are not provided, an object cannot be constructed from an abstract
class. Instead, the class must be extended and any missing methods provided. Such a
subclass can then be used to construct an object.

Abstract classes are useful where many subclasses can share common data or methods,
but each will have some unique attribute or attributes (data and/or methods). For
example, some set of geometric objects might share dimensions in X and Y, yet need
unique methods for calculating the area of the object.

adapter An adapter class is a class that is guaranteed to implement all unimplemented abstract
methods of its superclasses and interface classes that it inherits or lists as implemented
on the class instruction.

If any unimplemented methods are found, they will be automatically generated by the
language processor. Methods generated in this way will have the same visibility and
signature as the abstract method they implement, and if a return value is expected then a
default value is returned (as for the initial value of variables of the same type: that is,
null or, for values of primitive type, an implementation-defined value, typically 0).
Other than possibly returning a value, these methods are empty; that is, they have no
side-effects.

An adapter class provides a concrete representation of its superclasses and the interface
classes it implements. As such, it is especially useful for implementing event handlers
and the like, where only a small number of event-handling methods are needed but many
more might be specified in the interface class that describes the event model.44

An adapter class cannot have any abstract methods.

final A final class is considered to be complete; it cannot be subclassed (extended), and all its
methods are considered complete.45

interface An interface class is an abstract class that contains only abstract method definitions
and/or constants. That is, it defines neither instructions that implement methods nor
modifiable properties, and hence cannot be used to construct an object.

Interface classes are used by classes that claim to implement them (see the implements
keyword, described below). The difference between abstract and interface classes is that
the former may have methods which are not abstract, and hence can only be subclassed
(extended), whereas the latter are wholly abstract and may only be implemented.

44 For example, see the “Scribble” sample in the NetRexx package.
45 This modifier is provided for consistency with other languages, and may allow compilers to improve the performance of

classes that refer to the final class. In many cases it will reduce the reusability of the class, and hence should be avoided.

82 NetRexx Language Definition Version 3.01

Binary

The keyword binary indicates that the class is a binary class. In binary classes, literal strings and
numeric symbols are assigned native string or binary (primitive) types, rather than NetRexx types, and
native binary operations are used to implement operators where possible. When binary is not in effect
(the default), terms in expressions are converted to NetRexx types before use by operators. The section
Binary values and operations (see page 151) describes the implications of binary classes in detail.

Individual methods in a class which is not binary can be made into binary methods using the binary
keyword on the method instruction (see page 101).

Deprecated

The keyword deprecated indicates that the class is deprecated, which implies that a better alternative
is available and documented. A compiler can use this information to warn of out-of-date or other use
that is not recommended.

Extends

Classes form a hierarchy, with all classes (except the top of the tree, the Object46 class) being a
subclass of some other class. The extends keyword identifies the classname of the immediate
superclass of the new class – that is, the class immediately above it in the hierarchy. If no extends
phrase is given, the superclass is assumed to be Object (or null, in the case where the current class
is Object).

Uses

The uses keyword introduces a list of the names of one or more classes that will be used as a source
of constant (or static) properties and/or methods.

When a term (see page 52) starts with a symbol, method call, or indexed reference that is not known in
the current context, each class in the useslist and its superclasses are searched (in the order specified in
the useslist) for a constant or static method or property that matches the item. If found, the method or
property is used just as though explicitly qualified by the name of the class in which it was found.

The uses mechanism affects only the syntax of terms in the current class; it is not inherited by
subclasses of the current class.

Implements

The implements keyword introduces a list of the names of one or more interface classes (see above).
These interface classes are then known to (inherited by) the current class, in the order specified in the
interfacelist. Their methods (which are all abstract) and constant properties act as though part of the
current class, unless they are overridden (hidden) by a method or constant of the same name in the
current class.

If the current class is not an interface class then it must implement (provide non-abstract methods for)
all the methods inherited from the interface classes in the implements list.

Interface classes, therefore, can be used to:

1. Define a common set of methods (possibly with associated constants) that will be implemented

46 In the reference implementation, java.lang.Object.

Version 3.01 NetRexx Language Definition 83

by other classes.

2. Conveniently package collections of constants for use by other classes.

The implements list may not include the superclass of the current class.

84 NetRexx Language Definition Version 3.01

Do instruction
do [label name] [protect term];
 instructionlist
 [catch [vare =] exception;
 instructionlist]...
 [finally[;]
 instructionlist]
 end [name];

where name is a non-numeric symbol

and instructionlist is zero or more instructions

The do instruction is used to group instructions together for execution; these are executed once. The
group may optionally be given a label, and may protect an object while the instructions in the group
are executed; exceptional conditions can be handled with catch and finally.

The most common use of do is simply for treating a number of instructions as group.

Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
if a=3 then do
 a=a+2
 say 'Smile!'
 end

Here, only the first instructionlist is used. This forms the body of the group.

The instructions in the instructionlists may be any assignment, method call, or keyword instruction,
including any of the more complex constructions such as loop, if, select, and the do instruction itself.

Label phrase

If label is used to specify a name for the group, then a leave which specifies that name may be used to
leave the group, and the end that ends the group may optionally specify the name of the group for
additional checking.

Example:

do label sticky
 x=ask
 if x='quit' then leave sticky
 say 'x was' x
 end sticky

Protect phrase

If protect is given it must be followed by a term that evaluates to a value that is not just a type and is
not of a primitive type; while the do construct is being executed, the value (object) is protected – that
is, all the instructions in the do construct have exclusive access to the object.

Both label and protect may be specified, in any order, if required.

Version 3.01 NetRexx Language Definition 85

Exceptions in do groups

Exceptions that are raised by the instructions within a do group may be caught using one or more
catch clauses that name the exception that they will catch. When an exception is caught, the exception
object that holds the details of the exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will always be executed at the end
of the group, even if an exception is raised (whether caught or not).

The Exceptions section (see page 154) has details and examples of catch and finally.

86 NetRexx Language Definition Version 3.01

Exit instruction
exit [expression];

exit is used to unconditionally leave a program, and optionally return a result to the caller. The entire
program is terminated immediately.

If an expression is given, it is evaluated and the result of the evaluation is then passed back to the
caller in an implementation-dependent manner when the program terminates. Typically this value is
expected to be a small whole number; most implementations will accept values in the range 0 through
250. If no expression is given, a default result (which depends on the implementation, and is typically
zero) is passed back to the caller.

Example:

j=3
exit j*4
/* Would exit with the value '12' */

“Running off the end” of a program is equivalent to the instruction return;. In the case where the
program is simply a stand-alone application with no class or method instructions, this has the same
effect as exit;, in that it terminates the whole program and returns a default result.

Version 3.01 NetRexx Language Definition 87

If instruction
if expression[;]
 then[;] instruction
 [else[;] instruction]

The if construct is used to conditionally execute an instruction or group of instructions. It can also be
used to select between two alternatives.

The expression is evaluated and must result in either 0 or 1. If the result was 1 (true) then the
instruction after the then is executed. If the result was 0 (false) and an else was given then the
instruction after the else is executed.

Example:

if answer='Yes' then say 'OK!'
 else say 'Why not?'

Remember that if the else clause is on the same line as the last clause of the then part, then you need a
semicolon to terminate that clause.

Example:

if answer='Yes' then say 'OK!'; else say 'Why not?'

The else binds to the nearest then at the same level. This means that any if that is used as the
instruction following the then in an if construct that has an else clause, must itself have an else clause
(which may be followed by the dummy instruction, nop).

Example:

if answer='Yes' then if name='Fred' then say 'OK, Fred.'
 else say 'OK.'
 else say 'Why not?'

To include more than one instruction following then or else, use a grouping instruction (do, loop, or
select).

Example:

if answer='Yes' then do
 say 'Line one of two'
 say 'Line two of two'
 end

In this instance, both say instructions are executed when the result of the if expression is 1.

Multiple expressions, separated by commas, can be given on the if clause, which then has the syntax:

if expression[, expression]... [;]

In this case, the expressions are evaluated in turn from left to right, and if the result of any evaluation
is 1 then the test has succeeded and the instruction following the associated then clause is executed. If
all the expressions evaluate to 0 and an else was given then the instruction after the else is executed.

Note that once an expression evaluation has resulted in 1, no further expressions in the clause are
evaluated. So, for example, in:

-- assume 'name' is a string
if name=null, name='' then say 'Empty'

88 NetRexx Language Definition Version 3.01

then if name does not refer to an object it will compare equal to null and the say instruction will be
executed without evaluating the second expression in the if clause.

Notes:

1. An instruction may be any assignment, method call, or keyword instruction, including any of
the more complex constructions such as do, loop, select, and the if instruction itself. A null
clause is not an instruction, however, so putting an extra semicolon after the then or else is not
equivalent to putting a dummy instruction. The nop instruction is provided for this purpose.

2. The keyword then is treated specially, in that it need not start a clause. This allows the
expression on the if clause to be terminated by the then, without a “;” being required – were
this not so, people used to other computer languages would be inconvenienced. Hence the
symbol then cannot be used as a variable name within the expression.47

47 Strictly speaking, then should only be recognized if not the name of a variable. In this special case, however, NetRexx
language processors are permitted to treat then as reserved in the context of an if clause, to provide better performance
and more useful error reporting.

Version 3.01 NetRexx Language Definition 89

Import instruction
import name;

where name is one or more non-numeric symbols separated by periods, with an optional trailing
period.

The import instruction is used to simplify the use of classes from other packages. If a class is
identified by an import instruction, it can then be referred to by its short name, as given on the class
instruction (see page 81), as well as by its fully qualified name.

There may be zero or more import instructions in a program. They must precede any class instruction
(or any instruction that would start the default class).

In the following description, a package name names a package as described under the package
instruction (see page 113). The import name must be one of:

• A qualified class name, which is a package name immediately followed by a period which is
immediately followed by a short class name – in this case, the individual class identified is
imported.

• A package name – in this case, all the classes in the specified package are imported. The name
may have a trailing period.

• A partial package name (a package name with one or more parts omitted from the right,
indicated by a trailing period after the parts that are present) – in this case, all classes in the
package hierarchy below the specified point are imported.

Examples:

import java.lang.String
import java.lang
import java.

The first example above imports a single class (which could then be referred to simply as “String”).
The second example imports all classes in the “java.lang” package. The third example imports all
classes in all the packages whose name starts with “java.”.

When a class is imported explicitly, for example, using

import java.awt.List

this indicates that the short name of the class (List, in this example) may be used to refer to the class
unambiguously. That is, using this short name will not report an ambiguous reference warning (as it
would without the import instruction, because a java.util.List class was added in Java 1.2).

It follows that:

• Two classes imported explicitly cannot have the same short name.

• No class in a program being compiled can have the same short name as a class that is imported
explicitly.

because in either of these situations a use of the short name would be ambiguous.

Note also that an explicit import does not import the minor or dependent classes associated with a
name; they each require their own explicit import (unless the entire package is imported).

90 NetRexx Language Definition Version 3.01

In the reference implementation, the fundamental NetRexx and Java package hierarchies are
automatically imported by default, as though the instructions:

import netrexx.lang.
import java.lang.
import java.io.
import java.util.
import java.net.
import java.awt.
import java.applet.

had been executed before the program begins. In addition, classes in the current (working) directory
are imported if no package instruction is specified. If a package instruction is specified then all
classes in that package are imported.

Version 3.01 NetRexx Language Definition 91

Iterate instruction
iterate [name];

where name is a non-numeric symbol.

iterate alters the flow of control within a loop construct. It may only be used in the body (the first
instructionlist) of the construct.

Execution of the instruction list stops, and control is passed directly back up to the loop clause just as
though the last clause in the body of the construct had just been executed. The control variable (if any)
is then stepped (iterated) and termination conditions tested as normal and the instruction list is
executed again, unless the loop is terminated by the loop clause.

If no name is specified, then iterate will step the innermost active loop.

If a name is specified, then it must be the name of the label, or control variable if there is no label, of a
currently active loop (which may be the innermost), and this is the loop that is iterated. Any active do,
loop, or select constructs inside the loop selected for iteration are terminated (as though by a leave
instruction).

Example:

loop i=1 to 4
 if i=2 then iterate i
 say i
 end
/* Would display the numbers: 1, 3, 4 */

Notes:

1. A loop is active if it is currently being executed. If a method (even in the same class) is called
during execution of a loop, then the loop becomes inactive until the method has returned. iterate
cannot be used to step an inactive loop.

2. The name symbol, if specified, must exactly match the label (or the name of the control
variable, if there is no label) in the loop clause in all respects except case.

92 NetRexx Language Definition Version 3.01

Leave instruction
leave [name];

where name is a non-numeric symbol.

leave causes immediate exit from one or more do, loop, or select constructs. It may only be used in
the body (the first instructionlist) of the construct.

Execution of the instruction list is terminated, and control is passed to the end clause of the construct,
just as though the last clause in the body of the construct had just been executed or (if a loop) the
termination condition had been met normally, except that on exit the control variable (if any) will
contain the value it had when the leave instruction was executed.

If no name is specified, then leave must be within an active loop and will terminate the innermost
active loop.

If a name is specified, then it must be the name of the label (or control variable for a loop with no
label), of a currently active do, loop, or select construct (which may be the innermost). That
construct (and any active constructs inside it) is then terminated. Control then passes to the clause
following the end clause that matches the do, loop, or select clause identified by the name.

Example:

loop i=1 to 5
 say i
 if i=3 then leave
 end i
/* Would display the numbers: 1, 2, 3 */

Notes:

1. If any construct being left includes a finally clause, the instructionlist following the finally will
be executed before the construct is left.

2. A do, loop, or select construct is active if it is currently being executed. If a method (even in
the same class) is called during execution of an active construct, then the construct becomes
inactive until the method has returned. leave cannot be used to leave an inactive construct.

3. The name symbol, if specified, must exactly match the label (or the name of the control
variable, for a loop with no label) in the do, loop, or select clause in all respects except case.

Version 3.01 NetRexx Language Definition 93

Loop instruction
loop [label name] [protect termp] [repetitor] [conditional];
 instructionlist
 [catch [vare =] exception;
 instructionlist]...
 [finally[;]
 instructionlist]
 end [name];

where repetitor is one of:

 varc = expri [to exprt] [by exprb] [for exprf]
 varo over termo
 for exprr
 forever

and conditional is either of:

 while exprw
 until expru

and name is a non-numeric symbol

and instructionlist is zero or more instructions

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions.

The loop instruction is used to group instructions together and execute them repetitively. The loop
may optionally be given a label, and may protect an object while the instructions in the loop are
executed; exceptional conditions can be handled with catch and finally.

loop is the most complicated of the NetRexx keyword instructions. It can be used as a simple
indefinite loop, a predetermined repetitive loop, as a loop with a bounding condition that is
recalculated on each iteration, or as a loop that steps over the contents of a collection of values.

Syntax notes:

• The label and protect phrases may be in any order. They must precede any repetitor or
conditional.

• The first instructionlist is known as the body of the loop.

• The to, by, and for phrases in the first form of repetitor may be in any order, if used, and will be
evaluated in the order they are written.

• Any instruction allowed in a method is allowed in an instructionlist, including assignments,
method call instructions, and keyword instructions (including any of the more complex
constructions such as if, do, select, or the loop instruction itself).

• If for or forever start the repetitor and are followed by an “=” character, they are taken as

94 NetRexx Language Definition Version 3.01

control variable names, not keywords (as for assignment instructions).

• The expressions expri, exprt, exprb, or exprf will be ended by any of the keywords to, by, for,
while, or until (unless the word is the name of a variable).

• The expressions exprw or expru will be ended by either of the keywords while or until (unless
the word is the name of a variable).

Indefinite loops

If neither repetitor nor conditional are present, or the repetitor is the keyword forever, then the loop is
an indefinite loop. It will be ended only when some instruction in the first instructionlist causes control
to leave the loop.

Example:

/* This displays "Go caving!" at least once */
loop forever
 say 'Go caving!'
 if ask='' then leave
 end

Bounded loops

If a repetitor (other than forever) or conditional is given, the first instructionlist forms a bounded
loop, and the instruction list is executed according to any repetitor phrase, optionally modified by a
conditional phrase.

Simple bounded
loops

When the repetitor starts with the keyword for, the expression exprr is evaluated
immediately (with 0 added, to effect any rounding) to give a repetition count,
which must be a whole number that is zero or positive. The loop is then executed
that many times, unless it is terminated by some other condition.

Example:

/* This displays "Hello" five times */
loop for 5
 say 'Hello'
 end

Controlled
bounded loops

A controlled loop begins with an assignment, which can be identified by the “=”
that follows the name of a control variable, varc. The control variable is assigned
an initial value (the result of expri, formatted as though 0 had been added) before
the first execution of the instruction list. The control variable is then stepped (by
adding the result of exprb) before the second and subsequent times that the
instruction list is executed.

The name of the control variable, varc, must be a non-numeric symbol that names
an existing or new variable in the current method or a property in the current class
(that is, it cannot be element of an array, the property of a superclass, or a more
complex term). It is further restricted in that it must not already be used as the
name of a control variable or label in a loop (or do or select construct) that
encloses the new loop.

The instruction list in the body of the loop is executed repeatedly while the end
condition (determined by the result of exprt) is not met. If exprb is positive or
zero, then the loop will be terminated when varc is greater than the result of exprt.

Version 3.01 NetRexx Language Definition 95

If negative, then the loop will be terminated when varc is less than the result of
exprt.

The expressions exprt and exprb must result in numbers. They are evaluated once
only (with 0 added, to effect any rounding), in the order they appear in the
instruction, and before the loop begins and before expri (which must also result in
a number) is evaluated and the control variable is set to its initial value.

The default value for exprb is 1. If no exprt is given then the loop will execute
indefinitely unless it is terminated by some other condition.

Example:

loop i=3 to -2 by -1
 say i
 end
/* Would display: 3, 2, 1, 0, -1, -2 */

Note that the numbers do not have to be whole numbers:

Example:

x=0.3
loop y=x to x+4 by 0.7
 say y
 end
/* Would display: 0.3, 1.0, 1.7, 2.4, 3.1, 3.8 */

The control variable may be altered within the loop, and this may affect the
iteration of the loop. Altering the value of the control variable in this way is
normally considered to be suspect programming practice, though it may be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the
control variable is stepped, on the second and subsequent iterations). It is
therefore possible for the body of the loop to be skipped entirely if the end
condition is met immediately.

The execution of a controlled loop may further be bounded by a for phrase. In this
case, exprf must be given and must evaluate to a non-negative whole number. This
acts just like the repetition count in a simple bounded loop, and sets a limit to the
number of iterations around the loop if it is not terminated by some other
condition.

exprf is evaluated along with the expressions exprt and exprb. That is, it is
evaluated once only (with 0 added), when the loop instruction is first executed and
before the control variable is given its initial value; the three expressions are
evaluated in the order in which they appear. Like the to condition, the for count is
checked at the start of each iteration, as shown in the programmer’s model (see
page 99).

Example:

loop y=0.3 to 4.3 by 0.7 for 3
 say y
 end
/* Would display: 0.3, 1.0, 1.7 */

In a controlled loop, the symbol that describes the control variable may be

96 NetRexx Language Definition Version 3.01

specified on the end clause (unless a label is specified, see below). NetRexx will
then check that this symbol exactly matches the varc of the control variable in the
loop clause (in all respects except case). If the symbol does not match, then the
program is in error – this enables the nesting of loops to be checked automatically.

Example:

loop k=1 to 10
 ...
 ...
 end k /* Checks this is the END for K loop */

Note: The values taken by the control variable may be affected by the numeric
settings, since normal NetRexx arithmetic rules apply to the computation of
stepping the control variable.

Over When the second token of the repetitor is the keyword over, the control variable,
varo, is used to work through the sub-values in the collection of indexed strings
identified by termo. In this case, the loop instruction takes a “snapshot” of the
indexes that exist in the collection at the start of the loop, and then for each
iteration of the loop the control variable is set to the next available index from the
snapshot.

The number of iterations of the loop will be the number of indexes in the
collection, unless the loop is terminated by some other condition.

Example:

mycoll=''
mycoll['Tom']=1
mycoll['Dick']=2
mycoll['Harry']=3
loop name over mycoll
 say mycoll[name]
 end
/* might display: 3, 1, 2 */

Notes:

1. The order in which the values are returned is undefined; all that is known is
that all indexes available when the loop started will be recorded and
assigned to varo in turn as the loop iterates.

2. The same restrictions apply to varo as apply to varc, the control variable for
controlled loops (see above).

3. Similarly, the symbol varo may be used as a name for the loop and be
specified on the end clause (unless a label is specified, see below).

In the RexxLA implementation, the over form of repetitor may also be used to step
though the contents of any object that is of a type that is a subclass of
java.util.Dictionary, such as an object of type java.util.Hashtable.
In this case, termo specifies the dictionary, and a snapshot (enumeration) of the
keys to the Dictionary is taken at the start of the loop. Each iteration of the loop
then assigns a new key to the control variable varo which must be (or will be
given, if it is new) the type java.lang.Object.

Other types of collections you may loop over are those which have the interface
java.lang.Iterable and arrays with a single dimension. In this case, termo specifies

Version 3.01 NetRexx Language Definition 97

the collection to process and a snapshot of the values in the collection is taken at
the start of the loop. Each iteration of the loop then assigns a new value from the
collection to the control variable varo which must be the type of the collection
elements or (it will be given, if it is new) the type java.lang.Object.

Example:

myarray=[String 'one','two','three']
loop s over myarray
 say s
 end
/* will display: one, two, three */

Conditional
phrases

Any of the forms of loop syntax can be followed by a conditional phrase which
may cause termination of the loop.

If while is specified, exprw is evaluated, using the latest values of all variables in
the expression, before the instruction list is executed on every iteration, and after
the control variable (if any) is stepped. The expression must evaluate to either 0 or
1, and the instruction list will be repeatedly executed while the result is 1 (that is,
the loop ends if the expression evaluates to 0).

Example:

loop i=1 to 10 by 2 while i<6
 say i
 end
/* Would display: 1, 3, 5 */

If until is specified, expru is evaluated, using the latest values of all variables in
the expression, on the second and subsequent iterations, and before the control
variable (if any) is stepped.48 The expression must evaluate to either 0 or 1, and the
instruction list will be repeatedly executed until the result is 1 (that is, the loop
ends if the expression evaluates to 1).

Example:

loop i=1 to 10 by 2 until i>6
 say i
 end
/* Would display: 1, 3, 5, 7 */

Note that the execution of loops may also be modified by using the iterate or leave instructions.

Label phrase

The label phrase may used to specify a name for the loop. The name can then optionally be used on

• a leave instruction, to specify the name of the loop to leave

• an iterate instruction, to specify the name of the loop to be iterated

• the end clause of the loop, to confirm the identity of the loop that is being ended, for additional
checking.

48 Thus, it appears that the until condition is tested after the instruction list is executed on each iteration. However, it is the
loop clause that carries out the evaluation.

98 NetRexx Language Definition Version 3.01

Example:

loop label pooks i=1 to 10
 loop label hill while j<3
 ...
 if a=b then leave pooks
 ...
 end hill
 end pooks

In this example, the leave instruction leaves both loops.

If a label is specified using the label keyword, it overrides any name derived from the control variable
name (if any). That is, the variable name cannot be used to refer to the loop if a label is specified.

Protect phrase

The protect phrase may used to specify a term, termp, that evaluates to a value that is not just a type
and is not of a primitive type; while the loop construct is being executed, the value (object) is
protected – that is, all the instructions in the loop construct have exclusive access to the object.

Example:

loop protect myobject while a<b
 ...
 end

Both label and protect may be specified, in any order, if required.

Exceptions in loops

Exceptions that are raised by the instructions within a loop construct may be caught using one or more
catch clauses that name the exception that they will catch. When an exception is caught, the
exception object that holds the details of the exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will always be executed when the
loop ends, even if an exception is raised (whether caught or not).

The Exceptions section (see page 154) has details and examples of catch and finally.

Programmer’s model – how a typical loop is executed

This model forms part of the definition of the loop instruction.

For the following loop:

loop varc = expri to exprt by exprb while exprw
 ...
 instruction list
 ...
 end

NetRexx will execute the following:

Version 3.01 NetRexx Language Definition 99

 $tempt=exprt+0 /* ($variables are internal and */
 $tempb=exprb+0 /* are not accessible.) */
 varc=expri+0
 Transfer control to the point identified as $start:

$loop:
 /* An UNTIL expression would be tested here, with: */
 /* if expru then leave */
 varc=varc + $tempb
$start:
 if varc > $tempt then leave /* leave quits a loop */
 /* A FOR count would be checked here */
 if \exprw then leave
 ...
 instruction list
 ...
 Transfer control to the point identified as $loop:

Notes:

1. This example is for exprb >= 0. For a negative exprb, the test at the start point of the loop
would use “<” rather than “>”.

2. The upwards transfer of control takes place at the end of the body of the loop, immediately
before the end clause (or any catch or finally clause). The end clause is only reached when the
loop is finally completed.

100 NetRexx Language Definition Version 3.01

Method instruction
method name[([arglist])]
 [visibility] [modifier] [protect] [binary] [deprecated]
 [returns termr]
 [signals signallist];

where arglist is a list of one or more assignments, separated by commas

and visibility is one of:

 inheritable
 private
 public
 shared

and modifier is one of:

 abstract
 constant
 final
 native
 static

and signallist is a list of one or more terms, separated by commas.

The method instruction is used to introduce a method within a class, as described in Program
structure (see page 127), and define its attributes. The method must be given a name, which must be a
non-numeric symbol. This is its short name.

If the short name of a method matches the short name of the class in which it appears, it is a
constructor method. Constructor methods are used for constructing values (objects), and are described
in detail in Methods and Constructors (see page 57).

The body of the method consists of all clauses following the method instruction (if any) until the next
method or class instruction, or the end of the program.

The visibility, modifier, and protect keywords, and the returns and signals phrases, may appear in
any order.

Arguments

The arglist on a method instruction, immediately following the method name, is optional and defines
a list of the arguments for the method. An argument is a value that was provided by the caller when
the method was invoked.

If there are no arguments, this may optionally be indicated by an “empty” pair of parentheses.

In the arglist, each argument has the syntax of an assignment (see page 72), where the “=” and the
following expression may be omitted. The name in the assignment provides the name for the argument
(which must not be the same as the name of any property in the class). Each argument is also
optionally assigned a type, or type and default value, following the usual rules of assignment. If there

Version 3.01 NetRexx Language Definition 101

is no assignment, the argument is assigned the NetRexx string type, Rexx.

If there is no assignment (that is, there is no “=”) or the expression to the right of the “=” returns just a
type, the argument is required (that is, it must always be specified by the caller when the method is
invoked).

If an explicit value is given by the expression then the argument is optional; when the caller does not
provide an argument in that position, then the expression is evaluated when the method is invoked and
the result is provided to the method as the argument.

Optional arguments may be omitted “from the right” only. That is, arguments may not be omitted to
the left of arguments that are not omitted.

Examples:

method fred
method fred()
method fred(width, height)
method fred(width=int, height=int 10)

In these examples, the first two method instructions are equivalent, and take no arguments. The third
example takes two arguments, which are both strings of type Rexx. The final example takes two
arguments, both of type int; the second argument is optional, and if not supplied will default to the
value 10 (note that any valid expression could be used for the default value).

Visibility

Methods may be public, inheritable, private, or shared:

• A public method is visible to (that is, may be used by) all other classes to which the current class
is visible.

• An inheritable method is visible to (that is, may be used by) all classes in the same package and
also those classes that extend (that is, are subclasses of) the current class.

• A private method is visible only within the current class.

• A shared method is visible within the current package but is not visible outside the package.
Shared methods cannot be inherited by classes outside the package.

By default (i.e., if no visibility keyword is specified), methods are public.

Modifier

Most methods consist of instructions that follow the method instruction and implement the method;
the method is associated with an object constructed by the class. These are called standard methods.
The modifier keywords define that the method is not a standard method – it is special in some way.
Only one of the following modifier keywords is allowed:

abstract An abstract method has the name of the method and the types (but not values) of its
arguments defined, but no instructions to implement the method are provided (or
permitted).

If a class contains any abstract methods, an object cannot be constructed from it, and so
the class itself must be abstract; the abstract keyword must be present on the class
instruction (see page 81).

102 NetRexx Language Definition Version 3.01

Within an interface class, the abstract keyword is optional on the methods of the class,
as all methods must be abstract. No other modifier is allowed on the methods of an
interface class.

constant A constant method is a static method that cannot be overridden by a method in a subclass
of the current class. That is, it is both final and static (see below).

final A final method is considered to be complete; it cannot be overridden by a subclass of the
current class. private methods are implicitly final.49

native A native method is a method that is implemented by the environment, not by instructions
in the current class. Such methods have no NetRexx instructions to implement the
method (and none are permitted), and they cannot be overridden by a method in a
subclass of the current class.

Native methods are used for accessing primitive operations provided by the underlying
operating system or by implementation-dependent packages.

static A static method is a method that is not a constructor and is associated with the class,
rather than with an object constructed by the class. It cannot use properties directly,
except those that are also static (or constant).

Static methods may be invoked in the following ways:

1. Within the initialization expression of a static or constant property (such methods
are invoked when the class is first loaded).

2. By qualifying the name of the method with the name of its class (qualified by the
package name if necessary), for example, using “Math.Sin(1.3)” or
“java.lang.Math.Sin(1.3)”. Methods called in this way are in effect
functions.

3. By implicitly qualifying the name by including the name of its class in the uses
phrase in the class instruction for the current class. Static methods in classes
listed in this way can be used directly, without qualification, for example, as
“Sin(1.3)”. They may be still be qualified, if preferred.

In the reference implementation, stand-alone applications are started by the java
command invoking a static method called main which takes a single argument (of type
java.lang.String[]) and returns no result.

Protect

The keyword protect indicates that the method protects the current object (or class, for a static
method) while the instructions in the method are executed. That is, the instructions in the method have
exclusive access to the object; if some other method (or construct) is executing in parallel with the
invocation of the method and is protecting the same object then the method will not start execution
until the object is no longer protected.

Note that if a method or construct protecting an object invokes a method (or starts a new construct)
that protects the same object then execution continues normally. The inner method or construct is not
prevented from executing, because it is not executing in parallel.

49 This modifier may allow compilers to improve the performance of methods that are final, but may also reduce the
reusability of the class.

Version 3.01 NetRexx Language Definition 103

Binary

The keyword binary indicates that the method is a binary method.

In binary methods, literal strings and numeric symbols are assigned native string or binary (primitive)
types, rather than NetRexx types, and native binary operations are used to implement operators where
possible. When binary is not in effect (the default), terms in expressions are converted to NetRexx
types before use by operators. The section Binary values and operations (see page 151) describes the
implications of binary methods and classes in detail.

Notes:

1. Only the instructions inside the body of the method are affected by the binary keyword; any
arguments and expressions on the method instruction itself are not affected (this ensures that a
single rule applies to all the method signatures in a class).

2. All methods in a binary class are binary methods; the binary keyword on methods is provided
for classes in which only the occasional method needs to be binary (perhaps for performance
reasons). It is not an error to specify binary on a method in a binary class.

Deprecated

The keyword deprecated indicates that the method is deprecated, which implies that a better
alternative is available and documented. A compiler can use this information to warn of out-of-date or
other use that is not recommended.

Note that individual methods in interface classes cannot be deprecated; the whole class should be
deprecated in this case.

Returns

The returns keyword is followed by a term, termr, that must evaluate to a type. This type is used to
define the type of values returned by return instructions within the method.

The returns phrase is only required if the method is to return values of a type that is not NetRexx
strings (class Rexx). If returns is specified, all return instructions (see page 117) within the method
must specify an expression.

Example:

method filer(path, name) returns File
 return File(path||name)

This method always returns a value which is a File object.

Signals

The signals keyword introduces a list of terms that evaluate to types that are Exceptions (see page
154). This list enumerates and documents the exceptions that are signalled within the method (or by a
method which is called from the current method) but are not caught by a catch clause in a control
construct.

Example:

method soup(cat) signals IOException, DivideByZero

It is considered good programming practice to use this list to document “unusual” exceptions signalled

104 NetRexx Language Definition Version 3.01

by a method. Implementations that support the concept of checked exceptions (see page 156) must
report as an error any checked exception that is incorrectly included in the list (that is, if the exception
is never signalled or would always be caught). Such implementations may also offer an option that
enforces the listing of all or some checked exceptions.

Duplicate methods

Methods may not duplicate properties or other methods in the same class. Specifically:

• The short name of a method must not be the same as the name of any property in the same class.

• The number (zero or more) and types of the arguments of a method (or any subset permitted by
omitting optional arguments) must not be the same as those of any other method of the same
name in the class (also checking any subset permitted by omitting optional arguments).

Note that the second rule does allow multiple methods with the same name in a class, provided that the
number of arguments differ or at least one argument differs in type.

Version 3.01 NetRexx Language Definition 105

Nop instruction
nop;

nop is a dummy instruction that has no effect. It can be useful as an explicit “do nothing” instruction
following a then or else clause.

Example:

select
 when a=b then nop -- Do nothing
 when a>b then say 'A > B'
 otherwise say 'A < B'
 end

Note: Putting an extra semicolon instead of the nop would merely insert a null clause, which would
just be ignored by NetRexx. The second when clause would then immediately follow the then, and
hence would be reported as an error. nop is a true instruction, however, and is therefore a valid target
for the then clause.

106 NetRexx Language Definition Version 3.01

Numeric instruction
numeric digits [exprd];
 form [scientific];
 [engineering];

The numeric instruction is used to change the way in which arithmetic operations are carried out by a
program. The effects of this instruction are described in detail in the section on Numbers and
Arithmetic (see page 142).

numeric
digits

controls the precision under which arithmetic operations will be evaluated. If no
expression exprd is given then the default value of 9 is used. Otherwise the result of the
expression is rounded, if necessary, according to the current setting of numeric digits
before it is used. The value used must be a positive whole number.

There is normally no limit to the value for numeric digits (except the constraints
imposed by the amount of storage and other resources available) but note that high
precisions are likely to be expensive in processing time. It is recommended that the
default value be used wherever possible.

Note that small values of numeric digits (for example, values less than 6) are generally
only useful for very specialized applications. The setting of numeric digits affects all
computations, so even the operation of loops may be affected by rounding if small values
are used.

If an implementation does not support a requested value for numeric digits then the
instruction will fail with an exception (which may, as usual, be caught with the catch
clause of a control construct).

The current setting of numeric digits may be retrieved with the digits special word
(see page 133).

numeric
form

controls which form of exponential notation (see page 149) is to be used for the results of
operations. This may be either scientific (in which case only one, non-zero, digit will
appear before the decimal point), or engineering (in which case the power of ten will
always be a multiple of three, and the part before the decimal point will be in the range 1
through 999). The default notation is scientific.

The form is set directly by the sub-keywords scientific or engineering; if neither sub-
keyword is given, scientific is assumed. The current setting of numeric form may be
retrieved with the form special word (see page 133).

If an implementation does not support a requested value for numeric form then the
instruction will fail with an exception (which may, as usual, be caught with the catch
clause of a control construct).

The numeric instruction may be used where needed as a dynamically executed instruction in a
method.

It may also appear, more than once if necessary, before the first method in a class, in which case it
forms the default setting for the initialization of subsequent properties in the class and for all methods
in the class. In this case, any exception due to the numeric instruction is raised when the class is first
loaded.

Further, one or more numeric instructions may be placed before the first class instruction in a

Version 3.01 NetRexx Language Definition 107

program; they do not imply the start of a class. The numeric settings then apply to all classes in the
program (except interface classes), as though the numeric instructions were placed immediately
following the class instruction in each class (except that they will not be traced).

108 NetRexx Language Definition Version 3.01

Options instruction
options wordlist;

where wordlist is one or more symbols separated by blanks.

The options instruction is used to pass special requests to the language processor (for example, an
interpreter or compiler).

Individual words, known as option words, in the wordlist which are meaningful to the language
processor will be obeyed (these might control optimizations, enforce standards, enable
implementation-dependent features, etc.); those which are not recognized will be ignored (they are
assumed to be instructions to a different language processor). Option words in the list that are known
will be recognized independently of case.

There may be zero or more options instructions in a program. They apply to the whole program, and
must come before the first class instruction (or any instruction that starts a class).

In the reference implementation, the known option words are:

binary All classes in this program will be binary classes (see page 83). In binary classes,
literals are assigned binary (primitive) or native string types, rather than NetRexx
types, and native binary operations are used to implement operators where
appropriate, as described in “Binary values and operations” (see page 151). In
classes that are not binary, terms in expressions are converted to the NetRexx string
type, Rexx, before use by operators.

comments Comments from the NetRexx source program will be passed through to the the Java
output file (which may be saved with a .java.keep extension by using the -keep
command option).

Line comments become Java line comments (introduced by “//”). Block comments
become Java block comments (delimited by “/*” and “*/”), with nested block
comments having their delimiters changed to “(-” and “-)”).

compact Requests that warnings and error messages be displayed in compact form. This
format is more easily parsed than the default format, and is intended for use by
editing environments.

Each error message is presented as a single line, prefixed with the error token
identification enclosed in square brackets. The error token identification comprises
three words, with one blank separating the words. The words are: the source file
specification, the line number of the error token, the column in which it starts, and its
length. For example (all on one line):

[D:\test\test.nrx 3 8 5] Error: The external name
'class' is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null ('\0') character. Additional
words could be added to the error token identification later.

console Requests that compiler messages be written to console (the default). Use -noconsole
to prevent messages being written to the console.

Version 3.01 NetRexx Language Definition 109

This option only has an effect as a compiler option, and applies to all programs being
compiled.

crossref Requests that cross-reference listings of variables be prepared, by class.

decimal Decimal arithmetic may be used in the program. If nodecimal is specified, the
language processor will report operations that use (or, like normal string
comparison, might use) decimal arithmetic as an error. This option is intended for
performance-critical programs where the overhead of inadvertent use of decimal
arithmetic is unacceptable.

diag Requests that diagnostic information (for experimental use only) be displayed. The
diag option word may also have side-effects.

explicit Requires that all local variables must be explicitly declared (by assigning them a type
but no value) before assigning any value to them. This option is intended to permit
the enforcement of “house styles” (but note that the NetRexx compiler always checks
for variables which are referenced before their first assignment, and warns of
variables which are set but not used).

format Requests that the translator output file (Java source code) be formatted for improved
readability. Note that if this option is in effect, line numbers from the input file will
not be preserved (so run-time errors and exception trace-backs may show incorrect
line numbers).

java Requests that Java source code be produced by the translator. If nojava is specified,
no Java source code will be produced; this can be used to save a little time when
checking of a program is required without any compilation or Java code resulting.

logo Requests that the language processor display an introductory logotype sequence
(name and version of the compiler or interpreter, etc.).

replace Requests that replacement of the translator output (.java) file be allowed. The default,
noreplace, prevents an existing .java file being accidentally overwritten.

savelog Requests that compiler messages be written to the file NetRexxC.log in the current
directory. The messages are also displayed on the console, unless -noconsole is
specified.

This option only has an effect as a compiler option, and applies to all programs being
compiled.

sourcedir Requests that all .class files be placed in the same directory as the source file from
which they are compiled. Other output files are already placed in that directory. Note
that using this option will prevent the -run command option from working unless the
source directory is the current directory.

strictargs Requires that method invocations always specify parentheses, even when no
arguments are supplied. Also, if strictargs is in effect, method arguments are checked
for usage – a warning is given if no reference to the argument is made in the method.

strictassign Requires that only exact type matches be allowed in assignments (this is stronger
than Java requirements). This also applies to the matching of arguments in method
calls.

strictcase Requires that local and external name comparisons for variables, properties,
methods, classes, and special words match in case (that is, names must be identical to

110 NetRexx Language Definition Version 3.01

match).

strictimport Requires that all imported packages and classes be imported explicitly using import
instructions. That is, if in effect, there will be no automatic imports (see page 90),
except those related to the package instruction.

This option only has an effect as a compiler option, and applies to all programs being
compiled.

strictprops Requires that all properties, including those local to the current class, be qualified in
references. That is, if in effect, local properties cannot appear as simple names but
must be qualified by this. (or equivalent) or the class name (for static properties).

strictsignal Requires that all checked exceptions (see page 156) signalled within a method but not
caught by a catch clause be listed in the signals phrase of the method instruction.

symbols Symbol table information (names of local variables, etc.) will be included in any
generated .class file. This option is provided to aid the production of classes that are
easy to analyse with tools that can understand the symbol table information. The use
of this option increases the size of .class files.

trace, traceX If given as trace, trace1, or trace2, then trace instructions are accepted. The trace
output is directed according to the option word: trace1 requests that trace output is
written to the standard output stream, trace or trace2 imply that the output should be
written to the standard error stream (the default).

If notrace is given, then trace instructions are ignored. The latter can be useful to
prevent tracing overheads while leaving trace instructions in a program.

utf8 If given, clauses following the options instruction are expected to be encoded using
UTF-8, so all Unicode characters may be used in the source of the program.

In UTF-8 encoding, Unicode characters less than '\u0080' are represented using one
byte (whose most-significant bit is 0), characters in the range '\u0080' through
'\u07FF' are encoded as two bytes, in the sequence of bits:

110xxxxx 10xxxxxx

where the eleven digits shown as x are the least significant eleven bits of the
character, and characters in the range '\u0800' through '\uFFFF' are encoded as three
bytes, in the sequence of bits:

1110xxxx 10xxxxxx 10xxxxxx

where the sixteen digits shown as x are the sixteen bits of the character.

If noutf8 is given, following clauses are assumed to comprise only Unicode
characters in the range '\x00' through '\xFF', with the more significant byte of the
encoding of each character being 0.

Note: this option only has an effect as a compiler option, and applies to all programs
being compiled. If present on an options instruction, it is checked and must match the
compiler option (this allows processing with or without utf8 to be enforced).

verbose,
verboseX

Sets the “noisiness” of the language processor. The digit X may be any of the digits 0
through 5; if omitted, a value of 3 is used. The options noverbose and verbose0 both
suppress all messages except errors and warnings.

Prefixing any of the above with “no” turns the selected option off.

Version 3.01 NetRexx Language Definition 111

Example:

options binary nocrossref nostrictassign strictargs

The default settings of the various options are:

nobinary nocomments nocompact console crossref decimal nodiag noexplicit
noformat java logo noreplace nosavelog nosourcedir nostrictargs
nostrictassign nostrictcase nostrictimport nostrictprops nostrictsignal
nosymbols trace2 noutf8 verbose3

When an option word is repeated (in the same options instruction or not), or conflicting option words
are specified, then the last use determines the state of the option.

All option words may also be set as command line options when invoking the processor, by prefixing
them with “-”:

Example:

java COM.ibm.netrexx.process.NetRexxC -format foo.nrx

In this case, any options may come before, after, or between file specifications.

With the except of the utf8 option (see above), options set with the options instruction override
command-line settings, following the “last use” rule.

For more information, see the installation and user documentation for your implementation.

112 NetRexx Language Definition Version 3.01

Package instruction
package name;

where name is one or more non-numeric symbols separated by periods.

The package instruction is used to define the package to which the class or classes in the current
program belong.

Classes that belong to the same package have privileged access to other classes in the same package,
in that each class is visible to all other classes in the same package, even if not declared public.
Packages also conveniently group classes for use by the import instruction (see page 90).

The name must specify a package name, which is one or more non-numeric symbols, separated by
periods, with no blanks.

There must be at most one package instruction in a program. It must precede any class instruction (or
any instruction that would start the default class).

If a program contains no package instruction then its package is implementation-defined. Typically it
is grouped with other programs in some implementation-defined logical collection, such as a directory
in a file system.

Examples:

package testpackage
package com.ibm.venta

When a class is identified as belonging to a package, it has a qualified class name, which is its short
name, as given on the class instruction (see page 81), prefixed with the package name and a period.
For example, if the short name of a class is “RxLanguage” and the package name is
“com.ibm.venta” then the qualified name of the class would be “com.ibm.venta.RxLanguage”.

In the reference implementation, packages are kept in a hierarchy derived from the Java classpath,
where the segments of a package name correspond to a path in the hierarchy. The hierarchy is
typically the directories in a file system, or some equivalent (such as a “Zip” archive file), and so
package names should be considered case-sensitive (as some Java implementations use case-sensitive
file systems).

Version 3.01 NetRexx Language Definition 113

Parse instruction
parse term template;

where template is one or more non-numeric symbols separated by blanks and/or patterns, and a
pattern is one of:

 literalstring
 [indicator] number
 [indicator] (symbol)

and indicator is one of +, -, or =.

The parse instruction is used to assign characters (from a string) to one or more variables according to
the rules and templates described in the section Parsing templates (see page 136).

The value of the term is expected to be a string; if it is not a string, it will be converted to a string.

Any variables used in the template are named by non-numeric symbols (that is, they cannot be an array
reference or other term); they refer to a variable or property in the current class. Any values that are
used in patterns during the parse are converted to strings before use.

Any variables set by the parse instruction must have a known string type, or are given the NetRexx
string type, Rexx, if they are new.

The term itself is not changed unless it is a variable which also appears in the template and whose
value is changed by being in the template.

Example:

parse wordlist word1 wordlist

In this idiomatic example, the first word is removed from wordlist and is assigned to the variable
word1, and the remainder is assigned back to wordlist.

Notes:

1. The special words ask, source, and version, as described in the section Special names and
methods (see page 133), allow:

parse ask x -- parses a line from input stream
parse source x -- parses 'Java method filename'
parse version x -- parses 'NetRexx version date'

These special words may also be used within expressions.

2. Similarly, it is recommended that the initial (main) method in a stand-alone application place the
command string passed to it in a variable called arg.50

If this is done, the instruction:

parse arg template

will work, in a stand-alone application, in the same way as in Rexx (even though arg is not a
keyword in this case).51

50 In the reference implementation, this is automatic if the main method is generated by the NetRexx language processor.
51 Note, though, that the command string may have been edited by the environment; certain characters may not be allowed,

multiple blanks may have been reduced to single blanks, etc.

114 NetRexx Language Definition Version 3.01

Properties instruction
properties [visibility] [modifier] [deprecated] [unused];

where visibility is one of:

 inheritable
 private
 public
 shared

and modifier is one of:

 constant
 static
 transient
 volatile

and there must be at least one visibility or modifier keyword.

The properties instruction is used to define the attributes of following property variables, and
therefore must precede the first method instruction in a class. A properties instruction replaces any
previous properties instruction (that is, the attributes specified on properties instructions are not
cumulative).

The visibility, modifier, deprecated, and unused keywords may be in any order.

An example of the use of properties instructions may be found in the Program Structure section (see
page 127).

Visibility

Properties may be public, inheritable, private, or shared:52

• A public property is visible to (that is, may be used by) all other classes to which the current
class is visible.

• An inheritable property is visible to (that is, may be used by) all classes in the same package
and also those classes that extend (that is, are subclasses of) the current class, and which qualify
the property using an object of the subclass, or either this or super.

• A private property is visible only within the current class.

• A shared property is visible within the current package but is not visible outside the package.
Shared properties cannot be inherited by classes outside the package.

By default, if no properties instruction is used, or visibility is not specified, properties are inheritable
(but not public).53

52 An experimental option for visibility, indirect, is described in Appendix B (see page 177).
53 The default, here, was chosen to encourage the “encapsulation” of data within classes.

Version 3.01 NetRexx Language Definition 115

Modifier

Properties may also be constant, static, transient, or volatile:

• A constant property is associated with the class, rather than with an instance of the class (an
object). It is initialized when the class is loaded and may not be changed thereafter.

• A static property is associated with the class, rather than with an instance of the class (an
object). It is initialized when the class is loaded, and may be changed thereafter.

• A transient property is a property which should not be saved when an instance of the class is
saved (made persistent).

• A volatile property may change asynchronously, outside the control of the class, even when no
method in the class is being executed. If an implementation does not allow asynchronous
modification of properties, it should ignore this keyword.

Constant and static properties exist from when the class is first loaded (used), even if no object is
constructed by the class, and there will only be one copy of each property. Other properties are
constructed and initialized only when an object is constructed by the class; each object then has its
own copy of such properties.

By default, if no properties instruction is used, or modifier is not specified, properties are associated
with an object constructed by the class.

Deprecated

The keyword deprecated indicates that any property introduced by this instruction is deprecated,
which implies that a better alternative is available and documented. A compiler can use this
information to warn of out-of-date or other use that is not recommended.

Unused

The keyword unused indicates that the private properties which follow are not referenced explicitly in
the code for the class, and so a language processor should not warn that they exist but have not been
used. If a visibility keyword is specified it must be private.

For example:

properties private constant unused
 -- Serialization version
 serialVersionUID=long 8245355804974198832

Properties in interface classes

In interface classes (see page 82), properties must be both public and constant. In such classes, these
attributes for properties are the default and the properties instruction must not be used.

116 NetRexx Language Definition Version 3.01

Return instruction
return [expression];

return is used to return control (and possibly a result) from a NetRexx program or method to the point
of its invocation.

The expression (if any) is evaluated, active control constructs are terminated (as though by a leave
instruction), and the value of the expression is passed back to the caller.

The result passed back to the caller is a string of type Rexx, unless a different type was specified using
the returns keyword on the method instruction (see page 101) for the current method. In this case, the
type of the value of the expression must match (or be convertible to, as by the rules for assignment)
the type specified by the returns phrase.

Within a method, the use of expressions on return must be consistent. That is, either all return
instructions must specify a expression, or none may. If a returns phrase is given on the method
instruction for the current method then all return instructions must specify an expression.

Version 3.01 NetRexx Language Definition 117

Say instruction
say [expression];

say writes a string to the default output character stream. This typically causes it to be displayed (or
spoken, or typed, etc.) to the user.

Example:

data=100
say data 'divided by 4 =>' data/4
/* would display: "100 divided by 4 => 25" */

The result of evaluating the expression is expected to be a string; if it is not a string, it will be
converted to a string. This result string is written from the program via an implementation-defined
output stream.

By default, the result string is treated as a “line” (an implementation-dependent mechanism for
indicating line termination is effected after the string is written). If, however, the string ends in the
NUL character ('\-' or '\0') then that character is removed and line termination is not indicated.

The result string may be of any length. If no expression is specified, or the expression result is null,
then an empty line is written (that is, as though the expression resulted in a null string).

118 NetRexx Language Definition Version 3.01

Select instruction
select [label name] [protect term] [case expression];
 whenlist
 [otherwise[;] instructionlist]
 [catch [vare =] exception;
 instructionlist]...
 [finally[;]
 instructionlist]
 end [name];

where name is a non-numeric symbol

and whenlist is one or more whenconstructs

and whenconstruct is:

 when expression[, expression]... [;] then[;] instruction

and instructionlist is zero or more instructions.

select is used to conditionally execute one of several alternatives. The construct may optionally be
given a label, and may protect an object while the instructions in the construct are executed;
exceptional conditions can be handled with catch and finally, which follow the body of the construct.

Starting with the first when clause, each expression in the clause is evaluated in turn from left to right,
and if the result of any evaluation is 1 (or equals the case expression, see below) then the test has
succeeded and the instruction following the associated then (which may be a complex instruction such
as if, do, loop, or select) is executed and control will then pass directly to the end.

If the result of all the expressions in a when clause is 0, control will pass to the next when clause.

Note that once an expression evaluation in a when clause has resulted in a successful test, no further
expressions in the clause are evaluated.

If none of the when expressions result in 1, then control will pass to the instruction list (if any)
following otherwise. In this situation, the absence of an otherwise is a run-time error.54

Notes:

1. An instruction may be any assignment, method call, or keyword instruction, including any of
the more complex constructions such as do, loop, if, and the select instruction itself. A null
clause is not an instruction, however, so putting an extra semicolon after the then is not
equivalent to putting a dummy instruction (as it would be in C or PL/I). The nop instruction is
provided for this purpose.

2. The keyword then is treated specially, in that it need not start a clause. This allows the
expression on the when clause to be terminated by the then, without a “;” being required –
were this not so, people used to other computer languages would be inconvenienced. Hence the
symbol then cannot be used as a variable name within the expression.55

54 In the reference implementation, a NoOtherwiseException is raised.
55 Strictly speaking, then should only be recognized if not the name of a variable. In this special case, however, NetRexx

Version 3.01 NetRexx Language Definition 119

Label phrase

If label is used to specify a name for the select group, then a leave instruction (see page 93) which
specifies that name may be used to leave the group, and the end that ends the group may optionally
specify the name of the group for additional checking.

Example:

select label roman
 when a=b then say 'same'
 when a<b then say 'lo'
 otherwise
 say 'hi'
 if a=0 then leave roman
 say 'a non-0'
 end roman

In this example, if the variable a has the value 0 and b is negative then just “hi” is displayed.

Protect phrase

If protect is given it must be followed by a term that evaluates to a value that is not just a type and is
not of a primitive type; while the select construct is being executed, the value (object) is protected –
that is, all the instructions in the select construct have exclusive access to the object.

Both label and protect may be specified, in any order, if required.

Case phrase

If case is given it must follow any label or protect phrase, and must be followed by an expression.

When case is used, the expression following it is evaluated at the start of the select construct. The
result of the expression is then compared, using the strict equality operator (==), to the result of
evaluating the expression or expressions in each of the when clauses in turn until a match is found. As
usual, if no match is found then control will pass to the instruction list (if any) following otherwise,
and in this situation the absence of an otherwise is a run-time error.

For example, in:

select case i+1
 when 1 then say 'one'
 when 1+1 then say 'two'
 when 3, 4, 5 then say 'many'
end

then if i had the value 1 then the message displayed would be “two”.

The third when clause in the example demonstrates the use of the multiple expressions in a when
clause in this context. Similar to a select without case, each expression is evaluated in turn from left
to right and is then compared to the result of the case expression. As soon as one matches that result,
execution of the when clause stops (any further expressions are not evaluated) and the instruction
following the associated then clause is executed.

Notes:

1. When case is used, the result of evaluating the expression following each when no longer has
to be 0 or 1. Instead, it must be possible to compare each result to the result of the case

language processors are permitted to treat then as reserved in the context of a when clause, to provide better performance
and more useful error reporting.

120 NetRexx Language Definition Version 3.01

expression.

2. The case expression is evaluated only on entry to the select construct; it is not re-evaluated for
each when clause.

3. An exception raised during evaluation of the case expression will be caught by a suitable catch
clause in the construct, if one is present. Similarly, evaluation of the case expression is
protected by the protect phrase, if one is present.

4. In the reference implementation, a select case construct will be translated into a Java switch
construct provided that it meets the following criteria:

◦ The type of the case expression is byte, char, int, or short.

◦ The value of all the expressions on the when clauses are primitive constants (that is, they
consist of only constants of primitive types and operators valid for them and so may be
evaluated at compile time).

◦ No two expressions on the when clauses evaluate to the same value.

◦ It is not subject to tracing.

Under these conditions the semantics of the switch construct match those defined for select.
The example shown above would be translated to a switch construct if i had type int and options
binary were in effect.

Exceptions in select constructs

Exceptions that are raised by the instructions within the body of the group, or during evaluation of the
case expression, may be caught using one or more catch clauses that name the exception that they
will catch. When an exception is caught, the exception object that holds the details of the exception
may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will always be executed at the end
of the select group, even if an exception is raised (whether caught or not).

The Exceptions section (see page 154) has details and examples of catch and finally.

Version 3.01 NetRexx Language Definition 121

Signal instruction
signal term;

The signal instruction causes an “abnormal” change in the flow of control, by raising an exception.

The exception term may be a term that constructs or evaluates to an exception object, or it may be
expressed as the name of an exception type (in which case the default constructor, with no arguments,
for that type is used to construct an exception object). The exception object then represents the
exception and is available, if required, when the exception is handled.

The handling of exceptions is detailed in the Exceptions section (see page 154). In summary, when an
exception is signalled, all active pending do groups, loop loops, if constructs, and select constructs
may be ended. For each one in turn, from the innermost:

1. No further clauses within the body of the construct will be executed (in this respect, signal acts
like a leave for the construct).

2. The instructionlist following the first catch clause that matches the exception, if any, is
executed.

3. The instructionlist following the finally clause for the construct, if any, is executed.

If a catch matched the exception the exception is deemed handled, and execution resumes as though
the construct ended normally (unless a new exception was signalled in the catch or finally instruction
lists, in which case it is processed). Otherwise, any enclosing construct is ended in the same manner. If
there is no enclosing construct, then the current method is ended and the exception is signalled in the
caller.

Examples:

signal RxErrorTrace
signal DivideException('Divide by zero')

In the reference implementation, the term must either

• evaluate to an object that is assignable to the type Throwable (for example, a subclass of
Exception or RuntimeException).

• be a type that is a subclass of Throwable, in which case the default constructor (with no
arguments) for the given type is used to construct the exception object.

122 NetRexx Language Definition Version 3.01

Trace instruction
trace traceoption;

where traceoption is one of:
 tracesetting
 var [varlist]

where tracesetting is one of:

 all
 methods
 off
 results

and varlist is one or more variable names, optionally prefixed with a + or -

The trace instruction is used to control the tracing of the execution of NetRexx methods, and is
primarily used for debugging. It may change either the general trace setting or may select or deselect
the tracing of individual variables.

Within methods, the trace instruction changes the trace setting or variables tracing when it is
executed, and affects the tracing of all clauses in the method which are then executed (until changed
by a later trace instruction).

One or more trace instructions may appear before the first method in a class, one of which may set the
initial trace setting for all methods in the class (the default is off) and others may set up variables
tracing that applies to all the methods in the class. These act as though the trace instructions were
placed immediately following the method instruction in each method (except that they will not be
traced).

Similarly, one or more trace instructions may be placed before the first class instruction in a program;
they do not imply the start of a class. One of these may set the initial trace setting and others may set
up variables tracing for all classes in the program (except interface classes) and act as though the trace
instructions were placed immediately following the class instruction in each class.

Tracing clauses

The trace setting controls the tracing of clauses in a program, and may be one of the following:

all All clauses (except null clauses without commentary) which are in methods and which
are executed after the trace instruction will be traced. If trace all is placed before the
first method in the current class, the method instructions in the class, together with the
values of the arguments passed to each method, will be traced when the method is
invoked (that is, trace all implies trace methods).

methods All method clauses in the class will be traced when the method they introduce is
invoked, together with the values of the arguments passed to each method; no other
clauses, or results, will be traced. The trace methods instruction must be placed before
the first method in the current class (as otherwise it would have no effect).

off Turns tracing off; no following clauses, variables, or results will be traced.

Version 3.01 NetRexx Language Definition 123

results All clauses (except null clauses without commentary) which are in methods and which
are executed after the trace instruction will be traced, as though trace all had been
requested. In addition, the results of all expression evaluations and any results assigned
to a variable by an assignment, loop, or parse instruction are also traced.

If trace results is placed before the first method in the current class, the method
instructions in the class will be traced when the method is invoked, together with the
values of the arguments passed to each method.

Notes:

1. Tracing of clauses shows the data from the source of the program, starting at the first character
of the first token of the clause and including any commentary from that point until the end of
the clause.

2. When a loop is being traced, the loop clause itself will be traced on every iteration of the loop,
as indicated by the programmer’s model (see page 99); the end clause is only traced once, when
the loop completes normally.

3. With trace results, an expression is not traced if it is immediately used for an assignment (in an
assignment instruction, or when the control variable is initialized in a loop instruction). The
assignment will trace the result of the expression.

Tracing variables

The var option adds names to a list of monitored variables; it can also remove names from the list. If
the name of a variable in the current class or method is in the list, then trace results is turned on for
any assignment, loop, or parse clause that assigns a new value to the named variable.

Variable names are specified by listing them after the var keyword. Each name may be optionally
prefixed by a + or a - sign. A + sign indicates that the variable is to be added to the list of monitored
variables (the default), and a - sign indicates that the variable is to be removed from the list. Blanks
may be added before and after variable names and signs to separate the tokens and to improve
readability.

For example:

trace var a b c
-- now variables a, b, and c will be traced
trace var -b -c d
-- now variables a and d will be traced

Notes:

1. Names in the list following the var keyword are simple symbols that name variables in the
current class or current method. The variables may be properties, method arguments, or local
variables, and may be of any type, including arrays. The names are not case-sensitive; any
variables whose names match, independent of case, will be monitored.

2. No variable name can appear more than once in the list on one trace var instruction. However,
it is not an error to add the name of a variable which does not exist or is not then assigned a
value. Similarly, it is not an error to remove a name which is not currently being monitored.

3. One or more trace var instructions (along with one other trace instruction) are allowed before
the first method in a class. They all modify an initial list of monitored variables which is then
used for all methods in the class. Similarly, trace var instructions are allowed before the first
class in a program, in which case they apply to all classes (except interface classes).

124 NetRexx Language Definition Version 3.01

4. Other trace instructions do not affect the list of monitored variables. The trace off instruction
may be used to turn off tracing completely; in this case trace var (with or without any variable
names) will then turn the tracing of variables back on, using the current (or modified) variable
list.

5. For a parse instruction, only monitored variables have their assignments traced (unless trace
results is already in effect).

The format of trace output

Trace output is either clauses from the program being traced, or results (such as the results from
expressions).

The first clause or result traced on any line will be preceded by its line number in the program; this is
right-justified in a space which allows for the largest line number in the program, plus one blank.
Following clauses or results from the same line are preceded by white space of the same width;
however, any change of line number causes the line number to be included.

Clauses that are traced will be displayed with the formatting (indention) and layout used in the original
source stream for the program, starting with the first character of the first token of the clause.

Results (if requested) are converted to a string for tracing if necessary, are not indented, and have a
double quote prefixed and suffixed so that leading and trailing blanks are apparent; if, however, the
result being traced is null (see page 134) then the string “[null]” is shown (without quotes). For
results with an associated name (the values assigned to local variables, method arguments, or
properties in the current class), the name of the result precedes the data, separated by a single blank.

For clarity, implementations may replace “control codes” in the encoding of results (for example,
EBCDIC values less than '\x40', or Unicode values less than '\x20') by a question mark (“?”).

All lines displayed during tracing have a three character tag to identify the type of data being traced.
This tag follows the line number (or the space for a line number), and is separated from the line
number by a single blank. The traced clause or result follows the tag, after another blank. The
identifier tags may be:

= identifies the first line of the source of a single clause, i.e., the data actually in the program.

- identifies a continuation line from the source of a single clause. Continuations may be due to
the use of a continuation character (see page 48) or to the use of a block comment (see page 44)
which spans more than one line.

>a> Identifies a value assigned to a method argument of the current method. The name of the
argument is included in the trace.

>p> Identifies a value assigned to a property. The name of the property is included in the trace if the
property is in the current class.

>v> Identifies a value assigned to a local variable in the current method. The name of the variable is
included in the trace.

>>> Identifies the result of an expression evaluation that is not used for an assignment (for example,
an argument expression in a method call).

+++ Reserved for error messages that are not supplied by the environment underlying the
implementation.

If a trace line is produced in a different context (program or thread) from the preceding trace line (if

Version 3.01 NetRexx Language Definition 125

any) then a trace context line is shown. This shows the name of the program that produced the trace
line, and also the name of the thread (and thread group) of the context.

The thread group name is not shown if it is main, and in this case the thread name is then also
suppressed if its name is main.

Examples:

If the following instructions, starting on line 53 of a 120-line program, were executed:

trace all
if i=1 then say 'Hello'
 else say 'i<>1'
say -
 'A continued line'

the trace output (if i were 1) would be:

 54 *=* if i=1
 = then
 = say 'Hello'
 56 *=* say -
 57 *-* 'A continued line'

Similarly, for the 3-line program:

trace results
number=1/7
parse number before '.' after

the trace output would be:

 2 *=* number=1/7
 >v> number "0.142857143"
 3 *=* parse number before '.' after
 >v> before "0"
 >v> after "142857143"

Notes:

1. Trace output is written to an implementation-defined output stream (typically the “standard
error” output stream, which lets it be redirected to a destination separate from the default
destination for output which is used by the say instruction).

2. In some implementations, the use of trace instructions may substantially increase the size of
classes and the execution time of methods affected by tracing.56

3. With some implementations it may be possible to switch tracing on externally, without requiring
modification to the program.

56 In the reference implementation, options notrace may be used to disable all trace instructions and hence ensure that
tracing overhead is not accidentally incurred.

126 NetRexx Language Definition Version 3.01

Program structure
A NetRexx program is a collection of clauses (see page 44) derived from a single implementation-
defined source stream (such as a file). When a program is processed by a language processor57 it
defines one or more classes. Classes are usually introduced by the class instruction (see page 81), but
if the first is a standard class, intended to be run as a stand-alone application, then the class instruction
can be omitted. In this case, NetRexx defines an implied class and initialization method that will be
used.

The implied class and method permits the writing of “low boilerplate” programs, with a minimum of
syntax. The simplest, documented, NetRexx program that has an effect might therefore be:

Example:

/* This is a very simple NetRexx program */
say 'Hello World!'

In more detail, a NetRexx program consists of:

1. An optional prolog (package, import, and options instructions). Only one package
instruction is permitted per program.

2. One or more class definitions, each introduced by a class instruction.

A class definition comprises:

1. The class instruction which introduces the class (which may be inferred, see below).

2. Zero or more property variable assignments, along with optional properties instructions that
can alter their attributes, and optional numeric and trace instructions. Property variable
assignments take the form of an assignment (see page 72), with an optional “=” and expression,
which may:

◦ just name a property (by omitting the “=” and expression of the assignment), in which case it
refers to a string of type Rexx

◦ assign a type to the property (when the expression evaluates to just a type)

◦ assign a type and initial value to the property (when the expression returns a value).

3. Zero or more method definitions, each introduced by a method instruction (which may be
inferred if the class instruction is inferred, see below).

A method definition comprises:

• Any NetRexx instructions, except the class, method, and properties instructions and those
allowed in the prolog (the package, import, and options instructions).

57 Such as a compiler or interpreter.

Version 3.01 NetRexx Language Definition 127

Example:

/* A program with two classes */
import java.applet. -- for example

class testclass extends Applet
 properties public
 state -- property of type 'Rexx'
 i=int -- property of type 'int'
 properties constant
 j=int 3 -- property initialized to '3'

 method start
 say 'I started'
 state='start'

 method stop
 say 'I stopped'
 state='stop'

class anotherclass
 method testing
 loop i=1 to 10
 say '1, 2, 3, 4...'
 if i=7 then return
 end
 return

 method anothertest
 say '1, 2, 3, 4'

This example shows a prolog (with just an import instruction) followed by two classes. The first class
includes two public properties, one constant property, and two methods. The second class includes no
properties, but also has two methods.

Note that a return instruction implies no static scoping; the content of a method is ended by a method
(or class) instruction, or by the end of the source stream. The return instruction at the end of the
testing method is, therefore, unnecessary.

Program defaults
The following defaults are provided for NetRexx programs:

1. If, while parsing prolog instructions, some instruction that is not valid for the prolog and is not a
class instruction is encountered, then a default class instruction (with an implementation-
provided short name, typically derived from the name of the source stream) is inserted. If the
instruction was not a method instruction, then a default method instruction (with a name and
attributes appropriate for the environment, such as main) is also inserted.

In this latter case, it is assumed that execution of the program will begin by invocation of the
default method. In other words, a “stand-alone” application can be written without explicitly
providing the class and method instructions for the first method to be executed. An example of
such a program is given in Appendix A (see page 173).

In the reference implementation, the main method in a stand-alone application is passed the
words forming the command string as an array of strings of type java.lang.String (one word to
each element of the array). When the NetRexx reference implementation provides the main
method instruction by default, it also constructs a NetRexx string of type Rexx from this array

128 NetRexx Language Definition Version 3.01

of words, with a blank added between words, and assigns the string to the variable arg.

The command string may also have been edited by the underlying operating system
environment; certain characters may not be allowed, multiple blanks or whitespace may have
been reduced to single blanks, etc.

2. If a method ends and the last instruction at the outer level of the method scope is not return then
a return instruction is added if it could be reached. In this case, if a value is expected to be
returned by the method (due to other return instructions returning values, or there being a
returns keyword on the method instruction), an error is reported.

Language processors may provide options to prevent, or warn of, these defaults being applied, as
desired.

Version 3.01 NetRexx Language Definition 129

Minor and Dependent classes
A minor class in NetRexx is a class whose name is qualified by the name of another class, called its
parent, and a dependent class is a minor class that has a link to its parent class that allows a child
object simplified access to its parent object and its properties.

Minor classes
A minor class in NetRexx is a class whose name is qualified by the name of another class, called its
parent. This qualification is indicated by the form of the name of the class: the short name of the minor
class is prefixed by the name of its parent class (separated by a period). For example, if the parent is
called Foo then the full name of a minor class Bar would be written Foo.Bar. The short name, Bar,
is used for the name of any constructor method for the class; outside the class it can only be used to
identify the class in the context of the parent class (or from children of the minor class, see below).

The names of minor classes may be used in exactly the same way as other class names (types) in
programs. For example, a property might be declared and initialized thus:

abar=Foo.Bar null -- this has type Foo.Bar

or, if the class has a constructor, perhaps:

abar=Foo.Bar() -- constructs a Foo.Bar object

Minor classes must be in the same program (and hence in the same package) as their parent. They are
introduced by a class instruction that specifies their full name, for example:

class Foo.Bar extends SomeClass

Minor classes must immediately follow their parent class.58

Minor classes may have a parent which is itself a minor class, to any depth; the name and the
positioning rules are extended as necessary. For example, the following classes might exist in a
program:

class Foo
 class Foo.Bar
 class Foo.Bar.Nod
 class Foo.Bar.Pod
 class Foo.Car

As before, the children of Foo.Bar immediately follow their parent. The list of children of Foo can
be continued after the children of Foo.Bar have all been specified.

Note that the short name (last part of the name) of a minor class may not be the same as the short name
of any of its parents (a class Foo.Bar.Foo or a class Foo.Bar.Bar would be in error, for example).
This allows minor classes to refer to their parent classes by their short name without ambiguity.

Constructing objects in minor classes

A parent class can construct an object of a child class in the usual manner, by simply specifying its
constructor (identified by its short name, full name, or qualified name). For example, a method in the
Foo.Bar class above could construct an object of type Foo.Bar.Nod using:

anod=Nod()

(assuming the Foo.Bar.Nod class has a constructor that takes no arguments).

58 This allows compilers that generate Java source code to preserve line numbering.

130 NetRexx Language Definition Version 3.01

Similarly, minor classes can refer to the types and constructors of any of its parents by simply using
their short names. Hence, the Foo.Bar.Nod class could construct objects of its parents’ types thus:

abar=Bar()
afoo=Foo()

(again assuming the parent classes have constructors that take no arguments).

Classes other than the parent or an immediate child must use the full name (if necessary, qualified by
the package name) to refer to a minor class or its constructor.

Dependent classes
As described in the last section, minor classes provide an enhanced packaging (naming) mechanism
for classes, allowing classes to be structured within packages. A stronger link between a child class
and its parent is indicated by the modifier keyword dependent on the child class, which indicates that
the child is a dependent class. For example:

class Foo.Dep dependent extends SomeClass
 method Dep -- this is the constructor

An object constructed from a dependent class (a dependent object) is linked to the context of an object
of its parent type (its parent object). The linkage thus provided allows the child object simplified
access to the parent object and its properties.

In the example, an object of type Foo.Dep can only be constructed in the context of a parent object,
which must be of type Foo.

Constructing dependent objects

A parent class can construct a dependent object in the same way as when constructing objects of other
child types; that is, by simply specifying its constructor. In this case, however, the current object
(this) becomes the parent object of the newly constructed object. For example, a method in the Foo
class above could construct a dependent object of type Foo.Dep using:

adep=Dep()

(assuming the Dep class has a constructor that takes no arguments).

In general, for a class to construct an object from a dependent class, it must have a reference to an
object of the parent class (which will become the parent of the new object), and the constructor must
be called (by its short name) in the context of that parent object. For example:

parentObject=Foo()
adep=parentObject.Dep()

(In the same way, the first example could have been written:

adep=this.Dep()

within the parent class the this. is implied.)

In order to subclass a dependent class, the constructor of the dependent class must be invoked by the
subclass constructor in a similar manner. In this case, a qualified call to the usual special constructor
super is used, for example:

class ASub extends Foo.Dep
 method Asub(afoo=Foo)
 afoo.super()

Version 3.01 NetRexx Language Definition 131

The qualifier (afoo in the example) must be either the name of an argument to the constructor, or the
special word parent (if the classes share a common parent class), or the short name of a parent class
followed by .this (see below). The call to super must be the first instruction in the method, as
usual, and it must be present (it will not be generated automatically by the compiler).

Access to parent objects and their properties

Dependent classes have simplified access to their parent objects and their properties. In particular:

• The special word parent may be used to refer to the parent object of the current object. It may
appear alone in a term, or at the start of a compound term. It can only be used in non-static
contexts in a dependent class.

• In general, any of the objects in the chain of parents of a dependent object may be referred to by
qualifying the special word this with the short name of the parent class. For example,
extending the previous example, if the class Foo.Dep.Ent was a dependent class it could
contain references to Foo.this (the parent of its parent) or Dep.this (the latter being the
same as specifying parent). If preferred, the full name or the fully qualified name of the
parent class may be used instead of the short name.

Like parent, this construct can only be used at the start of a term in non-static contexts in a
dependent class.

• As usual, properties external to the current class must always be qualified in some way (for
example, the prefix parent. can be used in a term such as parent.aprop).

Restrictions
Minor classes may have any of the attributes (public, interface, etc.) of other classes, and behave in
every way like other classes, with the following restrictions:

• If a class is a static class (that is, it contains only static or constant properties and methods) then
any children cannot be dependent classes (because no object of the parent class can be
constructed). Similarly, interface classes and abstract classes cannot have dependent classes.

• Dependent classes may not be interfaces.

• Dependent classes may not contain static or constant properties (or methods).59 These must be
placed in a parent which is not a dependent class.

• Minor classes may be public only if their parent is also public. (Note that this is the only case
where more than one public class is permitted in a program.) In general: a minor class cannot
be more visible than its parent.

59 This restriction allows compilation for the Java platform.

132 NetRexx Language Definition Version 3.01

Special names and methods
For convenience, NetRexx provides some special names for naming commonly-used concepts within
terms. These are only recognized if there is no variable of the same name previously seen in the
current scope, as described in the section on Terms (see page 52). This allows the set of special words
to be expanded in the future, if necessary, without invalidating existing variables. Therefore, these
names are not reserved; they may be used as variable names instead, if desired.

There are also two “special methods” that are used when constructing objects.

Special names
The following special names are allowed in NetRexx programs, and are recognized independently of
case.60 With the exception of length and class, these may only be used alone as a term or at the
start of a compound term.

ask Returns a string of type Rexx, read as a line from the implementation-defined default
input stream (often the user’s “console”).

Example:

if ask='yes' then say 'OK'

ask can only appear alone, or at the start of a compound term.61

class The object of type Class that describes a specific type. This word is only recognized
as the second part of a compound term, where the evaluation of the first part of the
term resulted in a type or qualified type.

Example:

obj=String.class
say obj.isInterface /* would say '0' */

digits The current setting of numeric digits (see page 107), returned as a string of type
Rexx. This will be one or more Arabic numerals, with no leading blanks, zeros, or
sign, and no trailing blanks or exponent.

digits can only appear alone, or at the start of a compound term.

form The current setting of numeric form (see page 107), returned as a string of type
Rexx. This will have either the value “scientific” or the value “engineering”.

form can only appear alone, or at the start of a compound term.

length The length of an array (see page 77), returned as an implementation-dependent binary
type or string. This word is only recognized as the last part of a compound term,
where the evaluation of the rest of the term resulted in an array of dimension 1.

Example:

foo=char[7]
say foo.length /* would say '7' */

Note that you can get the length of a NetRexx string with the same syntax.62 In that
case, however, a length() method is being invoked.

60 Unless options strictcase is in effect.
61 In the reference implementation, ask is simply a shorthand for RexxIO.Ask().
62 Unless options strictargs is in effect.

Version 3.01 NetRexx Language Definition 133

null The empty reference. This is a special value that represents “no value” and may be
assigned to variables (or returned from methods) except those whose type is both
primitive and undimensioned. It may also be be used in a comparison for equality (or
inequality) with values of suitable type, and may be given a type.

Examples:

blob=int[3] -- 'blob' refers to array of 3 ints
blob=null -- 'blob' is still of type int[],
 -- but refers to no real object
mob=Mark null -- 'mob' is type 'Mark'

The null value may be considered to represent the state of being uninitialized. It can
only appear as simple symbol, not as a part of a compound term.

source Returns a string of type Rexx identifying the source of the current class. The string
consists of the following words, with a single blank between the words and no trailing
or leading blanks:

1. the name of the underlying environment (e.g., Java)

2. either method (if the term is being used within a method) or class (if the term
is being used within a property assignment, before the first method in a class)

3. an implementation-dependent representation of the name of the source stream
for the class (e.g., Fred.nrx).

source can only appear alone, or at the start of a compound term.

sourceline The line number of the first token of the current clause in the NetRexx program,
returned as a string of type Rexx. This will be one or more Arabic numerals, with no
leading blanks, zeros, or sign, and no trailing blanks or exponent.

sourceline can only appear alone, or at the start of a compound term.

super Returns a reference to the current object, with a type that is the type of the class that
the current object’s class extends. This means that a search for methods or properties
which super qualifies will start from the superclass rather than in the current class.
This is used for invoking a method or property (in the superclass or one of its
superclasses) that has been overridden in the current class.

Example:

method printit(x)
 say 'it' -- modification
 super.printit(x) -- now the usual processing

If a property being referenced is in fact defined by a superclass of the current class,
then the prefix “super.” is perhaps the clearest way to indicate that name refers to a
property of a superclass rather than to a local variable. (You could also qualify it by
the name of the superclass.)

super can only appear alone, or at the start of a compound term.

this Returns a reference to the current object. When a method is invoked, for example in:

word=Rexx "hello" -- 'word' refers to "hello"
say word.substr(3) -- invokes substr on "hello"

then the method substr in the class Rexx is invoked, with argument '3', and with
the properties of the value (object) "hello" available to it. These properties may be

134 NetRexx Language Definition Version 3.01

accessed simply by name, or (more explicitly) by prefixing the name with “this.”.
Using “this.” can make a method more readable, especially when several objects of
the same type are being manipulated in the method.

this can only appear alone, or at the start of a compound term.

trace The current trace (see page 123) setting, returned as a NetRexx string. This will be
one of the words:

off var methods all results

(var is returned when clause tracing is off but variable tracing has then been turned
on using a trace var instruction.)

trace can only appear alone, or at the start of a compound term.

version Returns a string of type Rexx identifying the version of the NetRexx language in
effect when the current class was processed. The string consists of the following
words, with a single blank between the words and no trailing or leading blanks:

1. A word describing the language. The first seven letters will be the characters
NetRexx, and the remainder may be used to identify a particular
implementation or language processor. This word may not include any periods.

2. The language level description, which must be a number with no sign or
exponential part. For example, “3.00” is the language level of this definition.

3. Three words describing the language processor release date in the same format
as the default for the Rexx “date()” function.63 For example, “22 May
2009”.

version can only appear alone, or at the start of a compound term.

Special methods
Constructors (methods used for constructing objects) in NetRexx must invoke a constructor of their
superclass before making any modifications to the current object (or invoke another constructor in the
current class).

This is simplified and made explicit by the provision of the special method names super and this,
which refer to constructors of the superclass and current class respectively. These special methods are
only recognized when used as the first, method call, instruction in a constructor, as described in
Methods and constructors (see page 57). Their names will be recognized independently of case.64

In addition, NetRexx provides special constructor methods for the primitive types that allow binary
construction of primitives. These are described in Binary values and arithmetic (see page 152).

63 As defined in American National Standard for Information Technology – Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

64 Unless options strictcase is in effect.

Version 3.01 NetRexx Language Definition 135

Parsing templates
The parse instruction allows a selected string to be parsed (split up) and assigned to variables, under
the control of a template.

The various mechanisms in the template allow a string to be split up by explicit matching of strings
(called patterns), or by specifying numeric positions (positional patterns – for example, to extract data
from particular columns of a line read from a character stream). Once split into parts, each segment of
the string can then be assigned to variables as a whole or by words (delimited by blanks).

This section first gives some informal examples of how the parsing template can be used, and then
defines the algorithms in detail.

Introduction to parsing
The simplest form of parsing template consists of a list of variable names. The string being parsed is
split up into words (characters delimited by blanks), and each word from the string is assigned to a
variable in sequence from left to right. The final variable is treated specially in that it will be assigned
whatever is left of the original string and may therefore contain several words. For example, in the
parse instruction:

parse 'This is a sentence.' v1 v2 v3

the term (in this case a literal string) following the instruction keyword is parsed, and then: the
variable v1 would be assigned the value “This”, v2 would be assigned the value “is”, and v3 would
be assigned the value “a sentence.”.

Leading blanks are removed from each word in the string before it is assigned to a variable, as is the
blank that delimits the end of the word. Thus, variables set in this manner (v1 and v2 in the example)
will never have leading or trailing blanks, though v3 could have both leading and trailing blanks.

Note that the variables assigned values in a template are always given a new value and so if there are
fewer words in the string than variables in the template then the unused variables will be set to the null
string.

The second parsing mechanism uses a literal string in a template as a pattern, to split up the string. For
example:

parse 'To be, or not to be?' w1 ',' w2

would cause the string to be scanned for the comma, and then split at that point; the variable w1 would
be set to “To be”, and w2 is set to “ or not to be?”. Note that the pattern itself (and only the
pattern) is removed from the string. Each section of the string is treated in just the same way as the
whole string was in the previous example, and so either section could be split up into words.

Thus, in:

parse 'To be, or not to be?' w1 ',' w2 w3 w4

w2 and w3 would be assigned the values “or” and “not”, and w4 would be assigned the remainder:
“to be?”.

If the string in the last example did not contain a comma, then the pattern would effectively “match”
the end of the string, so the variable to the left of the pattern would get the entire input string, and the
variables to the right would be set to a null string.

The pattern may be specified as a variable, by putting the variable name in parentheses. The following

136 NetRexx Language Definition Version 3.01

instructions therefore have the same effect as the last example:

c=','
parse 'To be, or not to be?' w1 (c) w2 w3 w4

The third parsing mechanism is the numeric positional pattern. This works in the same way as the
string pattern except that it specifies a column number. So:

parse 'Flying pigs have wings' x1 5 x2

would split the string at the fifth column, so x1 would be “Flyi” and x2 would start at column 5 and
so be “ng pigs have wings”.

More than one pattern is allowed, so for example:

parse 'Flying pigs have wings' x1 5 x2 10 x3

would split the string at columns 5 and 10, so x2 would be “ng pi” and x3 would be
“gs have wings”.

The numbers can be relative to the last number used, so:

parse 'Flying pigs have wings' x1 5 x2 +5 x3

would have exactly the same effect as the last example; here the +5 may be thought of as specifying
the length of the string to be assigned to x2.

As with literal string patterns, the positional patterns can be specified as a variable by putting the name
of a variable, in parentheses, in place of the number. An absolute column number should then be
indicated by using an equals sign (“=”) instead of a plus or minus sign. The last example could
therefore be written:

start=5
length=5
data='Flying pigs have wings'
parse data x1 =(start) x2 +(length) x3

String patterns and positional patterns can be mixed (in effect the beginning of a string pattern just
specifies a variable column number) and some very powerful things can be done with templates. The
next section describes in more detail how the various mechanisms interact.

Parsing definition
This section describes the rules that govern parsing.

In its most general form, a template consists of alternating pattern specifications and variable names.
Blanks may be added between patterns and variable names to separate the tokens and to improve
readability. The patterns and variable names are used strictly in sequence from left to right, and are
used once only. In practice, various simpler forms are used in which either variable names or patterns
may be omitted; we can therefore have variable names without patterns in between, and patterns
without intervening variable names.

In general, the value assigned to a variable is that sequence of characters in the input string between
the point that is matched by the pattern on its left and the point that is matched by the pattern on its
right.

If the first item in a template is a variable, then there is an implicit pattern on the left that matches the
start of the string, and similarly if the last item in a template is a variable then there is an implicit
pattern on the right that matches the end of the string. Hence the simplest template consists of a single
variable name which in this case is assigned the entire input string.

Version 3.01 NetRexx Language Definition 137

Setting a variable during parsing is identical in effect to setting a variable in an assignment.

The constructs that may appear as patterns fall into two categories; patterns that act by searching for a
matching string (literal patterns), and numeric patterns that specify an absolute or relative position in
the string (positional patterns). Either of these can be specified explicitly in the template, or
alternatively by a reference to a variable whose value is to be used as the pattern.

For the following examples, assume that the following sample string is being parsed; note that all
blanks are significant – there are two blanks after the first word “is” and also after the second comma:

'This is the text which, I think, is scanned.'

Parsing with literal patterns

Literal patterns cause scanning of the data string to find a sequence that matches the value of the
literal. Literals are expressed as a quoted string. The null string matches the end of the data.

The template:

w1 ',' w2 ',' w3

when parsing the sample string, results in:

w1 has the value "This is the text which"
w2 has the value " I think"
w3 has the value " is scanned."

Here the string is parsed using a template that asks that each of the variables receive a value
corresponding to a portion of the original string between commas; the commas are given as quoted
strings. Note that the patterns themselves are removed from the data being parsed.

A different parse would result with the template:

w1 ',' w2 ',' w3 ',' w4

which would result in:

w1 has the value "This is the text which"
w2 has the value " I think"
w3 has the value " is scanned."
w4 has the value "" (null string)

This illustrates an important rule. When a match for a pattern cannot be found in the input string, it
instead “matches” the end of the string. Thus, no match was found for the third ',' in the template,
and so w3 was assigned the rest of the string. w4 was assigned a null string because the pattern on its
left had already reached the end of the string.

Note that all variables that appear in a template in this way are assigned a new value.

Parsing strings into words

If a variable is directly followed by one or more other variables, then the string selected by the patterns
is assigned to the variables in the following manner. Each blank-delimited word in the string is
assigned to each variable in turn, except for the last variable in the group (which is assigned the
remainder of the string). The values of the variables which are assigned words will have neither
leading nor trailing blanks.

Thus the template:

w1 w2 w3 w4 ','

138 NetRexx Language Definition Version 3.01

would result in:

w1 has the value "This'
w2 has the value "is"
w3 has the value "the"
w4 has the value "text which"

Note that the final variable (w4 in this example) could have had both leading blanks and trailing
blanks, since only the blank that delimits the previous word is removed from the data.

Also observe that this example is not the same as specifying explicit blanks as patterns, as the
template:

w1 ' ' w2 ' ' w3 ' ' w4 ','

would in fact result in:

w1 has the value "This'
w2 has the value "is"
w3 has the value "" (null string)
w4 has the value "the text which"

since the third pattern would match the third blank in the data.

In general, when a variable is followed by another variable then parsing of the input into individual
words is implied. The parsing process may be thought of as first splitting the original string up into
other strings using the various kinds of patterns, and then assigning each of these new strings to (zero
or more) variables.

Use of the period as a placeholder

A period (separated from any symbols by at least one blank) acts as a placeholder in a template. It has
exactly the same effect as a variable name, except that no variable is set. It is especially useful as a
“dummy variable” in a list of variables, or to collect (ignore) unwanted information at the end of a
string. Thus the template:

 . . . word4 .

would extract the fourth word (“text”) from the sample string and place it in the variable word4.
Blanks between successive periods in templates may be omitted, so the template:

 ... word4 .

would have the same result as the last template.

Parsing with positional patterns

Positional patterns may be used to cause the parsing to occur on the basis of position within the string,
rather than on its contents. They take the form of whole numbers, optionally preceded by a plus,
minus, or equals sign which indicate relative or absolute positioning. These may cause the matching
operation to “back up” to an earlier position in the data string, which can only occur when positional
patterns are used.

Absolute positional patterns: A number in a template that is not preceded by a sign refers to a
particular (absolute) character column in the input, with 1 referring to the first column. For example,
the template:

s1 10 s2 20 s3

Version 3.01 NetRexx Language Definition 139

results in:

s1 has the value "This is "
s2 has the value "the text w"
s3 has the value "hich, I think, is scanned."

Here s1 is assigned characters from the first through the ninth character, and s2 receives input
characters 10 through 19. As usual the final variable, s3, is assigned the remainder of the input.

An equals sign (“=”) may be placed before the number to indicate explicitly that it is to be used as an
absolute column position; the last template could have been written:

s1 =10 s2 =20 s3

A positional pattern that has no sign or is preceded by the equals sign is known as an absolute
positional pattern.

Relative positional patterns: A number in a template that is preceded by a plus or minus sign
indicates movement relative to the character position at which the previous pattern match occurred.
This is a relative positional pattern.

If a plus or minus is specified, then the position used for the next match is calculated by adding (or
subtracting) the number given to the last matched position. The last matched position is the position of
the first character of the last match, whether specified numerically or by a string.

For example, the instructions:

parse '123456789' 3 w1 +3 w2 3 w3

result in

w1 has the value "345"
w2 has the value "6789"
w3 has the value "3456789"

The +3 in this case is equivalent to the absolute number 6 in the same position, and may also be
considered to be specifying the length of the data string to be assigned to the variable w1.

This example also illustrates the effects of a positional pattern that implies movement to a character
position to the left of (or to) the point at which the last match occurred. The variable on the left is
assigned characters through the end of the input, and the variable on the right is, as usual, assigned
characters starting at the position dictated by the pattern.

A useful effect of this is that multiple assignments can be made:

parse x 1 w1 1 w2 1 w3

This results in assigning the (entire) value of x to w1, w2, and w3. (The first “1” here could be omitted
as it is effectively the same as the implicit starting pattern described at the beginning of this section.)

If a positional pattern specifies a column that is greater than the length of the data, it is equivalent to
specifying the end of the data (i.e., no padding takes place). Similarly, if a pattern specifies a column
to the left of the first column of the data, this is not an error but instead is taken to specify the first
column of the data.

Any pattern match sets the “last position” in a string to which a relative positional pattern can refer.
The “last position” set by a literal pattern is the position at which the match occurred, that is, the
position in the data of the first character in the pattern. The literal pattern in this case is not removed
from the parsed data. Thus the template:

',' -1 x +1

140 NetRexx Language Definition Version 3.01

will:

1. Find the first comma in the input (or the end of the string if there is no comma).

2. Back up one position.

3. Assign one character (the character immediately preceding the comma or end of string) to the
variable x.

One possible application of this is looking for abbreviations in a string. Thus the instruction:

/* Ensure options have a leading blank and are
 in uppercase before parsing. */
parse (' 'opts).upper ' PR' +1 prword ' '

will set the variable prword to the first word in opts that starts with “PR” (in any case), or will set it to
the null string if no such word exists.

Notes:

1. The positional patterns +0 and -0 are valid, have the same effect, and may be used to include
the whole of a previous literal (or variable) pattern within the data string to be parsed into any
following variables.

2. As illustrated in the last example, patterns may follow each other in the template without
intervening variable names. In this case each pattern is obeyed in turn from left to right, as
usual.

3. There may be blanks between the sign in a positional pattern and the number, because NetRexx
defines that blanks adjacent to special characters are removed.

Parsing with variable patterns

It is sometimes desirable to be able to specify a pattern by using the value of a variable instead of a
fixed string or number. This may be achieved by placing the name of the variable to be used as the
pattern in parentheses (blanks are not necessary either inside or outside the parentheses, but may be
added if desired). This is called a variable reference; the value of the variable is converted to string
before use, if necessary.

If the parenthesis to the left of the variable name is not preceded by an equals, plus, or minus sign
(“=”, “+”, or “-”) the value of the variable is then used as though it were a literal (string) pattern. The
variable may be one that has been set earlier in the parsing process, so for example:

input="L/look for/1 10"
parse input verb 2 delim +1 string (delim) rest

will set:

verb to 'L'
delim to '/'
string to 'look for'
rest to '1 10'

If the left parenthesis is preceded by an equals, plus, or minus sign then the value of the variable is
used as an absolute or relative positional pattern (instead of as a literal string pattern). In this case the
value of the variable must be a non-negative whole number, and (as before) it may have been set
earlier in the parsing process.

Version 3.01 NetRexx Language Definition 141

Numbers and Arithmetic
NetRexx arithmetic attempts to carry out the usual operations (including addition, subtraction,
multiplication, and division) in as “natural” a way as possible. What this really means is that the rules
followed are those that are conventionally taught in schools and colleges. However, it was found that
unfortunately the rules used vary considerably (indeed much more than generally appreciated) from
person to person and from application to application and in ways that are not always predictable. The
NetRexx arithmetic described here is therefore a compromise which (although not the simplest) should
provide acceptable results in most applications.

Introduction
Numbers can be expressed in NetRexx very flexibly (leading and trailing blanks are permitted,
exponential notation may be used) and follow conventional syntax. Some valid numbers are:

 12 /* A whole number */
 '-76' /* A signed whole number */
 12.76 /* Some decimal places */
 ' + 0.003 ' /* Blanks around the sign, etc. */
 17. /* Equal to 17 */
 '.5' /* Equal to 0.5 */
 4E+9 /* Exponential notation */
 0.73e-7 /* Exponential notation */

(Exponential notation means that the number includes a sign and a power of ten following an “E” that
indicates how the decimal point will be shifted. Thus 4E+9 above is just a short way of writing
4000000000, and 0.73e-7 is short for 0.000000073.)

The arithmetic operators include addition (indicated by a “+”), subtraction (“-”), multiplication (“*”),
power (“**”), and division (“/”). There are also two further division operators: integer divide (“%”)
which divides and returns the integer part, and remainder (“//”) which divides and returns the
remainder. Prefix plus (“+”) and prefix minus (“-”) operators are also provided.

When two numbers are combined by an operation, NetRexx uses a set of rules to define what the
result will be (and how the result is to be represented as a character string). These rules are defined in
the next section, but in summary:

• Results will be calculated with up to some maximum number of significant digits. That is, if a
result required more than 9 digits it would normally be rounded to 9 digits. For instance, the
division of 2 by 3 would result in 0.666666667 (it would require an infinite number of digits for
perfect accuracy).

You can change the default of 9 significant digits by using the numeric digits instruction. This
lets you calculate using as many digits as you need – thousands, if necessary.

• Except for the division and power operators, trailing zeros are preserved (this is in contrast to
most electronic calculators, which remove all trailing zeros in the decimal part of results). So,
for example:

2.40 + 2 => 4.40
2.40 - 2 => 0.40
2.40 * 2 => 4.80
2.40 / 2 => 1.2

This preservation of trailing zeros is desirable for most calculations (and especially financial
calculations).

142 NetRexx Language Definition Version 3.01

If necessary, trailing zeros may be easily removed with the strip method (see page 168), or by
division by 1.

• A zero result is always expressed as the single digit '0'.

• Exponential form is used for a result depending on its value and the setting of numeric digits
(the default is 9 digits). If the number of places needed before the decimal point exceeds this
setting, or the absolute value of the number is less than 0.000001, then the number will be
expressed in exponential notation; thus

1e+6 * 1e+6

results in “1E+12” instead of “1000000000000”, and

1 / 3E+10

results in “3.33333333E-11” instead of “0.0000000000333333333”.

• Any mixture of Arabic numerals (0-9) and Extra digits (see page 46) can be used for the digits
in numbers used in calculations. The results are expressed using Arabic numerals.

Definition
This definition describes arithmetic for NetRexx strings (type Rexx). The arithmetic operations are
identical to those defined in the ANSI standard for Rexx. 65

Numbers

A number in NetRexx is a character string that includes one or more decimal digits, with an optional
decimal point. The decimal point may be embedded in the digits, or may be prefixed or suffixed to
them. The group of digits (and optional point) thus constructed may have leading or trailing blanks,
and an optional sign (“+” or “-”) which must come before any digits or decimal point. The sign may
also have leading or trailing blanks. Thus:

sign ::= + | -
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digits ::= digit [digit]...
numeric ::= digits . [digits]
 | [.] digits
number ::= [blank]... [sign [blank]...]
 numeric [blank]...

where if the implementation supports extra digits (see page 46) these are also accepted as digits,
providing that they represent values in the range zero through nine. In this case each extra digit is
treated as though it were the corresponding character in the range 0-9.

Note that a single period alone is not a valid number.

Precision

The maximum number of significant digits that can result from an arithmetic operation is controlled
by the digits keyword on the numeric instruction (see page 107):

numeric digits [expression];

The expression is evaluated and must result in a positive whole number. This defines the precision

65 American National Standard for Information Technology – Programming Language REXX, X3.274-1996, American
National Standards Institute, New York, 1996.

Version 3.01 NetRexx Language Definition 143

(number of significant digits) to which arithmetic calculations will be carried out; results will be
rounded to that precision, if necessary.

If no expression is specified, then the default precision is used. The default precision is 9, that is, all
implementations must support at least nine digits of precision. An implementation-dependent
maximum (equal to or larger than 9) may apply: an attempt to exceed this will cause execution of the
instruction to terminate with an exception. Thus if an algorithm is defined to use more than 9 digits
then if the numeric digits instruction succeeds then the computation will proceed and produce
identical results to any other implementation.

Note that numeric digits may set values below the default of nine. Small values, however, should be
used with care – the loss of precision and rounding thus requested will affect all NetRexx
computations, including (for example) the computation of new values for the control variable in loops.

In the remainder of this section, the notation digits refers to the current setting of numeric digits.
This setting may also be referred to in expressions in programs by using the digits special word (see
page 133).

Arithmetic operators

NetRexx arithmetic is effected by the operators “+”, “-”, “*”, “/”, “%”, “//”, and “**” (add, subtract,
multiply, divide, integer divide, remainder, and power) which all act upon two terms, together with the
prefix operators “+” and “-” (plus and minus) which both act on a single term. The result of all these
operations is a NetRexx string, of type Rexx. This section describes the way in which these operations
are carried out.

Before every arithmetic operation, the term or terms being operated upon have any extra digits
converted to the corresponding Arabic numeral (the digits 0-9). They then have leading zeros
removed (noting the position of any decimal point, and leaving just one zero if all the digits in the
number are zeros) and are then truncated to digits+1 significant digits66 (if necessary) before being
used in the computation. The operation is then carried out under up to double that precision, as
described under the individual operations below. When the operation is completed, the result is
rounded if necessary to the precision specified by the numeric digits instruction.

Rounding is done in the “traditional” manner, in that the extra (guard) digit is inspected and values of
5 through 9 are rounded up, and values of 0 through 4 are rounded down.67

A conventional zero is supplied preceding a decimal point if otherwise there would be no digit before
it. Trailing zeros are retained for addition, subtraction, and multiplication, according to the rules given
below, except that a result of zero is always expressed as the single character '0'. For division,
insignificant trailing zeros are removed after rounding.

The format method (see page 163) is defined to allow a number to be represented in a particular
format if the standard result provided by NetRexx does not meet requirements.

66 That is, to the precision set by numeric digits, plus one extra “guard” digit.
67 Even/odd rounding would require the ability to calculate to arbitrary precision (that is, to a precision not governed by the

setting of numeric digits) at any time and is therefore not the mechanism defined for NetRexx.

144 NetRexx Language Definition Version 3.01

Arithmetic operation rules – basic operators

The basic operators (addition, subtraction, multiplication, and division) operate on numbers as
follows:

Addition and
subtraction

If either number is zero then the other number, rounded to digits digits if necessary,
is used as the result (with sign adjustment as appropriate). Otherwise, the two
numbers are extended on the right and left as necessary up to a total maximum of
digits+1 digits.

The number with smaller absolute value may therefore lose some or all of its digits on
the right.68 The numbers are then added or subtracted as appropriate. For example:

xxxx.xxx + yy.yyyyy

becomes:

 xxxx.xxx00
+ 00yy.yyyyy

 zzzz.zzzzz

The result is then rounded to digits digits if necessary, taking into account any extra
(carry) digit on the left after an addition, but otherwise counting from the position
corresponding to the most significant digit of the terms being added or subtracted.
Finally, any insignificant leading zeros are removed.

The prefix operators are evaluated using the same rules; the operations “+number”
and “-number” are calculated as “0+number” and “0-number”, respectively.

Multiplication The numbers are multiplied together (“long multiplication”) resulting in a number
which may be as long as the sum of the lengths of the two operands. For example:

xxx.xxx * yy.yyyyy

becomes:

zzzzz.zzzzzzzz

and the result is then rounded to digits digits if necessary, counting from the first
significant digit of the result.

Division For the division:

yyy / xxxxx

the following steps are taken: first, the number “yyy” is extended with zeros on the
right until it is larger than the number “xxxxx” (with note being taken of the change
in the power of ten that this implies). Thus in this example, “yyy” might become
“yyy00”. Traditional long division then takes place, which can be written:

 zzzz
 .------
xxxxx | yyy00

The length of the result (“zzzz”) is such that the rightmost “z” will be at least as far
right as the rightmost digit of the (extended) “y” number in the example. During the
division, the “y” number will be extended further as necessary, and the “z” number
(which will not include any leading zeros) may increase up to digits+1 digits, at
which point the division stops and the result is rounded. Following completion of the

68 In the example, the number yy.yyyyy would have three digits truncated if digits were 5.

Version 3.01 NetRexx Language Definition 145

division (and rounding if necessary), insignificant trailing zeros are removed.

Examples:

/* With 'numeric digits 5' */
12+7.00 == 19.00
1.3-1.07 == 0.23
1.3-2.07 == -0.77
1.20*3 == 3.60
7*3 == 21
0.9*0.8 == 0.72
1/3 == 0.33333
2/3 == 0.66667
5/2 == 2.5
1/10 == 0.1
12/12 == 1
8.0/2 == 4

Note: With all the basic operators, the position of the decimal point in the terms being operated upon
is arbitrary. The operations may be carried out as integer operations with the exponent being calculated
and applied afterwards. Therefore the significant digits of a result are not in any way dependent on the
position of the decimal point in either of the terms involved in the operation.

Arithmetic operation rules – additional operators

The operation rules for the power (“**”), integer division (“%”), and remainder (“//”) operators are as
follows:

Power The “**” (power) operator raises a number (on the left of the operator) to a power (on
the right of the operator). The term on the right is rounded to digits digits (if
necessary), and must, after any rounding, be a whole number, which may be positive,
negative, or zero. If negative, the absolute value of the power is used, and then the
result is inverted (divided into 1).

For calculating the power, the number is effectively multiplied by itself for the
number of times expressed by the power, and finally trailing zeros are removed (as
though the result were divided by one).

In practice (see note below for the reasons), the power is calculated by the process of
left-to-right binary reduction. For “x**n”: “n” is converted to binary, and a
temporary accumulator is set to 1. If “n” has the value 0 then the initial calculation is
complete. Otherwise each bit (starting at the first non-zero bit) is inspected from left
to right. If the current bit is 1 then the accumulator is multiplied by “x”. If all bits
have now been inspected then the initial calculation is complete, otherwise the
accumulator is squared by multiplication and the next bit is inspected. When the
initial calculation is complete, the temporary result is divided into 1 if the power was
negative.

The multiplications and division are done under the normal arithmetic operation rules,
detailed earlier in this section, using a precision of digits+elength+1 digits. Here,
elength is the length in decimal digits of the integer part of the whole number “n”
(i.e., excluding any sign, decimal part, decimal point, or insignificant leading zeros, as
though the operation n%1 had been carried out and any sign removed). Finally, the
result is rounded to digits digits, if necessary, and insignificant trailing zeros are
removed.

146 NetRexx Language Definition Version 3.01

Integer
division

The “%” (integer divide) operator divides two numbers and returns the integer part of
the result. The result returned is defined to be that which would result from repeatedly
subtracting the divisor from the dividend while the dividend is larger than the divisor.
During this subtraction, the absolute values of both the dividend and the divisor are
used: the sign of the final result is the same as that which would result if normal
division were used.

The result returned will have no fractional part (that is, no decimal point or zeros
following it). If the result cannot be expressed exactly within digits digits, the
operation is in error and will fail – that is, the result cannot have more digits than the
current setting of numeric digits. For example, 10000000000%3 requires ten digits
to express the result exactly (3333333333) and would therefore fail if digits were
9 or smaller.

Remainder The “//” (remainder) operator will return the remainder from integer division, and is
defined as being the residue of the dividend after the operation of calculating integer
division as just described. The sign of the remainder, if non-zero, is the same as that
of the original dividend.

This operation will fail under the same conditions as integer division (that is, if
integer division on the same two terms would fail, the remainder cannot be
calculated).

Examples:

/* Again with 'numeric digits 5' */
2**3 == 8
2**-3 == 0.125
1.7**8 == 69.758
2%3 == 0
2.1//3 == 2.1
10%3 == 3
10//3 == 1
-10//3 == -1
10.2//1 == 0.2
10//0.3 == 0.1
3.6//1.3 == 1.0

Notes:

1. A particular algorithm for calculating powers is described, since it is efficient (though not
optimal) and considerably reduces the number of actual multiplications performed. It therefore
gives better performance than the simpler definition of repeated multiplication. Since results
could possibly differ from those of repeated multiplication, the algorithm must be defined here
so that different implementations will give identical results for the same operation on the same
values. Other algorithms for this (and other) operations may always be used, so long as they
give identical results to those described here.

2. The integer divide and remainder operators are defined so that they may be calculated as a by-
product of the standard division operation (described above). The division process is ended as
soon as the integer result is available; the residue of the dividend is the remainder.

Version 3.01 NetRexx Language Definition 147

Numeric comparisons

Any of the comparative operators (see page 66) may be used for comparing numeric strings. However,
the strict comparisons (for example, “==” and “>>”) are not numeric comparative operators and should
not normally be used for comparing numbers, since they compare from left to right and leading and
trailing blanks (and leading zeros) are significant for these operators.

Numeric comparison, using the normal comparative operators, is effected by subtracting the two
numbers (calculating the difference) and then comparing the result with '0' – that is, the operation:

A ? B

where “?” is any normal comparative operator, is identical to:

(A - B) ? '0'

It is therefore the difference between two numbers, when subtracted under NetRexx subtraction rules,
that determines their equality.

Exponential notation

The definition of numbers above (see page 143) describes “pure” numbers, in the sense that the
character strings that describe numbers can be very long.

Examples:

say 10000000000 * 10000000000
/* would display: 100000000000000000000 */

say 0.00000000001 * 0.00000000001
/* would display: 0.0000000000000000000001 */

For both large and small numbers some form of exponential notation is useful, both to make such long
numbers more readable and to make evaluation possible in extreme cases. In addition, exponential
notation is used whenever the “pure” form would give misleading information. For example:

numeric digits 5
say 54321*54321

would display “2950800000” if long form were to be used. This is misleading, as it appears that the
result is an exact multiple of 100000, and so NetRexx would express the result in exponential notation,
in this case “2.9508E+9”.

The definition of number (see above) is therefore extended by replacing the description of numeric
by the following:

mantissa ::= digits . [digits]
 | [.] digits
numeric ::= mantissa [E sign digits]

In other words, the numeric part of a number may be followed by an “E” (indicating an exponential
part), a sign, and an integer following the sign that represents a power of ten that is to be applied. The
“E” may be in uppercase or lowercase. Note that no blanks are permitted within this part of a number,
but the integer may have leading zeros.

Examples:

12E+11 = 1200000000000
12E-5 = 0.00012
 12e+4 = 120000

All valid numbers may be used as data for arithmetic. The results of calculations will be returned in

148 NetRexx Language Definition Version 3.01

exponential form depending on the setting of numeric digits. If the number of places needed before
the decimal point exceeds digits, or if the absolute value of the result is less than 0.000001, then
exponential form will be used. The exponential form generated by NetRexx always has a sign
following the “E”. If the exponent is 0 then the exponential part is omitted – that is, an exponential
part of “E+0” will never be generated.

If the default format for a number is not satisfactory for a particular application, then the format
method may be used to control its format. Using this, numbers may be explicitly converted to
exponential form or even forced to be returned in “pure” form.

Different exponential notations may be selected with the numeric form instruction (see page 107).
This instruction allows the selection of either scientific or engineering notation. Scientific notation
adjusts the power of ten so there is a single non-zero digit to the left of the decimal point. Engineering
notation causes powers of ten to be expressed as a multiple of three – the integer part may therefore
range from 1 through 999.

Examples:

numeric form scientific
say 123.45 * 1e11
/* would display: 1.2345E+13 */

numeric form engineering
say 123.45 * 1e11
/* would display: 12.345E+12 */

The default exponential notation is scientific.

Whole numbers

Within the set of numbers understood by NetRexx it is useful to distinguish the subset defined as
whole numbers.

A whole number in NetRexx is a number that has a decimal part which is all zeros (or that has no
decimal part).

Numbers used directly by NetRexx

As discussed above, the result of any arithmetic operation is rounded (if necessary) according to the
setting of numeric digits. Similarly, when a number (which has not necessarily been involved in an
arithmetic operation) is used directly by NetRexx then the same rounding is also applied, just as
though the operation of adding the number to 0 had been carried out. After this operation, the integer
part of the number must have no more digits than the current setting of numeric digits.

In the following cases, the number used must be a whole number and an implementation restriction on
the largest number that can be used may apply:

• positional patterns, including variable positional patterns, in parsing templates (see page 136)

• the power value (right hand operand) of the power operator (see page 146)

• the values of exprr and exprf (following the for keyword) in the loop instruction (see page 94)

• the value of exprd (following the digits keyword) in the numeric instruction (see page 107).

Implementation minimum: A minimum length of 9 digits must be supported for these uses of whole
numbers by a NetRexx language processor.

Version 3.01 NetRexx Language Definition 149

Implementation independence

The NetRexx arithmetic rules are defined in detail, so that when a given program is run the results of
all computations are sufficiently defined that the same answer will result for all correct
implementations. Differences due to the underlying machine architecture will not affect computations.

This contrasts with most other programming languages, and with binary arithmetic (see page 151) in
NetRexx, where the result obtained may depend on the implementation because the precision and
algorithms used by the language processor are defined by the implementation rather than by the
language.

Exceptions and errors

The following exceptions and errors may be signalled during arithmetic:

• Divide exception

This exception will be signalled if division by zero was attempted, or if the integer result of an
integer divide or remainder operation had too many digits.

• Overflow/Underflow exception

This exception will be signalled if the exponential part of a result (from an operation that is not
an attempt to divide by zero) would exceed the range that can be handled by the language
processor, when the result is formatted according to the current settings of numeric digits and
numeric form. The language defines a minimum capability for the exponential part, namely
exponents whose absolute value is at least as large as the largest number that can be expressed
as an exact integer in default precision. Thus, since the default precision is nine,
implementations must support exponents in the range -999999999 through 999999999.

• Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an arithmetic
operation may fail due to lack of storage. This is considered an operating environment error as
usual, rather than an arithmetical exception.

In the reference implementation, the exceptions and error types used for these three cases are
DivideException, ExponentOverflowException, and OutOfMemoryError, respectively.

150 NetRexx Language Definition Version 3.01

Binary values and operations
By default, arithmetic and string operations in NetRexx are carried out using the NetRexx string class,
Rexx, which offers the robust set of operators described in Expressions and operators (see page 65).

NetRexx implementations, however, may also provide primitive datatypes, as described in Types and
Classes (see page 50). These primitive types are used for compact storage of numbers and for fast
binary arithmetic, features which are built-in to the hardware of most computers.

To make use of binary arithmetic, a class is declared to be a binary class (see page 83) by using the
binary keyword on the class instruction. In such a class, literal strings and numeric symbols are
assigned native string or primitive types, rather than NetRexx types, where appropriate, and native
binary operations are used to implement operators where possible, as detailed below. Implementations
may also provide a keyword on the options (see page 109) instruction that indicates that all classes in
a program are binary classes.69

Alternatively, individual methods within a class may be declared to be a binary method (see page 104)
by using the binary keyword on the method instruction.

Binary classes and methods should be used with care. Although binary arithmetic can have a
considerable performance advantage over arithmetic that is not implemented in hardware, it can give
incorrect or unexpected results. In particular, whole numbers (integers) are often held in fixed-sized
data areas (of 8, 16, 32, or 64 bits), and overflowing the data area during a calculation can result in a
positive number becoming negative and vice versa. Similarly, binary numbers that are not whole
numbers (floating-point numbers) cannot exactly represent common numbers in the decimal system
(0.1, 0.2, etc.), and hence can give unexpected results.

Operations in binary classes and methods

In a binary class or method, the following (and only the following) rules differ from the usual rules:

Dyadic
operations in
expressions

If the operands of a dyadic operator both have primitive numeric types70 then binary
operations are carried out. The type of the result is implementation defined, and is
typically the type of the more precise of the two operands, or of some minimum
precision.71 Arithmetic operations follow the usual rules of binary arithmetic, as
defined for the underlying environment of the implementation.

Note that NetRexx provides both divide and integer divide operators; in a binary class
or method, the divide operator (“/”) converts its operands to floating-point types and
returns a floating-point result, whereas the integer divide operator (“%”) converts its
operands to integer types and returns an integer result. The remainder operator must
accept both integer and floating-point types.

Logical operations (and, or, and exclusive or) apply to all the bits of the operands,
and are not permitted on floating-point types.

Prefix
operations in

If the operand of a prefix operator has a primitive numeric type, then the type of the
result is the type of the operand, subject to the same minimum as dyadic operations.

69 In the reference implementation, options binary is used.
70 In the reference implementation, boolean is considered to be a numeric type (having the values 0 or 1) but char is not.

Characters, and strings or arrays of characters, always use the rules defined for NetRexx strings.
71 In the reference implementation, the minimum precision is 32 bits, so an int is returned for results that would otherwise

be byte or short. If both operands are boolean, however, and the operation is a logical operation, then the type of the
result is boolean.

Version 3.01 NetRexx Language Definition 151

expressions Prefix plus and minus follow the rules of dyadic operators (because they are defined
as being zero plus or minus the operand) with the additional rule that if acting on a
literal number (a constant in the program) then the result is also considered to be a
literal constant. Logical not (prefix “\”) does not apply to all the bits of its operand;
instead, it changes a 0 to 1 and vice versa.

Assignments In assignments where the value being assigned is the result of an expression which
comprises a string or number literal constant, the type of the result is defined as
follows:

1. Strings are given the native string type, even for a single-character literal.72

2. Numbers are given the smallest possible primitive numeric type that will
contain the literal without loss of information (or minimal loss of information
for numbers with decimal or exponential parts). If this is smaller than the
implementation-defined minimum precision used for the result of adding the
literal to 0, then the type of that minimum precision is used.

If the constant is an integer, and no primitive integer binary type has sufficient
precision to hold the number without loss of information, then the number is
treated as a literal string (that is, as though it were enclosed in quotes).
NetRexx arithmetic would then be used if it were involved in an arithmetic
operation.

These rules can apply in assignment instructions, the initial assignment to the control
variable in the loop instruction, or the assignment of a default value to the argument
of a method; the result type may define the type of the variable (if new, or a method
argument).

Control
variables in
loops

In the loop instruction, if the control variable has a primitive integer type, and the
increment (by value) has a primitive integer type, then binary arithmetic will be used
for stepping the control variable, following the rules for binary arithmetic in
expressions described above.

Similarly, if the control variable has a primitive integer type, and the end (to) value
has a primitive integer type, then binary arithmetic will be used for the comparison
that tests for loop termination.

Numeric
instruction

The numeric instruction does not affect binary operations. It has the usual effects on
operations carried out using NetRexx arithmetic.

Note: At all times (whether in binary classes, binary methods, or anywhere else) implementations may
use primitive types and operations, and techniques such as late binding of types, as an optimization
providing that the results obtained are identical to those defined in this language definition.

Binary constructors

NetRexx provides special constructors for implementation-defined primitive types that allow bit-wise
construction of primitives. These binary constructors are especially useful for manipulating the binary
encodings of individual characters.

The binary constructors follow the same syntax as other constructors, with the name being that of a
primitive type. All binary constructors take one argument, which must have a primitive type.

72 In the reference implementation, this type is java.lang.String.

152 NetRexx Language Definition Version 3.01

The bits of the value of the argument are extended or truncated on the left to the same length as the
bits required for the type of the constructor (following the usual binary rules of sign extension if the
argument type is a signed numeric type), and a value with the type of the constructor is then
constructed directly from those bits and returned.

Example:

This example illustrates types from the reference implementation, with 32-bit signed integers of type
int and 16-bit Unicode characters of type char.

i=int 77 -- i is now the integer 77
c=char(i) -- c is now the character 'M'
j=int(c) -- j is now the integer 77

Note that the conversion

j=int c

would have failed, as “M” is not a number.

Version 3.01 NetRexx Language Definition 153

Exceptions
Exceptional conditions, including errors, in NetRexx are handled by a mechanism called Exceptions.
When an exceptional condition occurs, a signal takes place which may optionally be caught by an
enclosing control construct, as detailed below.

An exception can be signalled by:

1. the program’s environment, when some processing error occurs (such as running out of
memory, or a problem discovered when reading or writing a file)

2. a method called by a NetRexx program (if, for example, it is passed incorrect arguments)

3. the signal instruction (see page 122).

In all cases, the signal is handled in exactly the same way. First, execution of the current clause ceases;
no further operations within the clause will be carried out.73 Next, an object that represents the
exception is constructed. The type of the exception object is implementation-dependent, as described
for the signal instruction (see page 122), and defines the type of the exception. The object constructed
usually contains information about the Exception (such as a descriptive string).

Once the object has been constructed, all active do groups, loop loops, if constructs, and select
constructs in the active method are “unwound”, starting with the innermost, until the exception is
caught by a control construct that specifies a suitable catch clause (see below) for handling the
exception.

This unwinding takes place as follows:

1. No further clauses within the body of the construct will be executed (in this respect, the signal
acts like a leave for the construct).

2. If a catch clause specifies a type to which the exception object can be assigned (that is, it
matches or is a superclass of the type of exception object), then the instructionlist following that
clause is executed, and the exception is considered to be handled (no further control constructs
will be unwound). If more than one catch clause specifies a suitable type, the first is used.

3. The instructionlist following the finally clause for the construct, if any, is executed.

4. The end clause is executed, hence completing execution of the construct. (The only effect of
this is that it is seen when tracing.)

5. If the exception was handled, then execution resumes as though the construct completed
normally. If it was not handled, then the process is repeated for any enclosing constructs.

If the exception is not caught by any of the control constructs enclosing the original point of the
exception signal, then the current active method is terminated, without returning any data, and the
exception is then signalled at the point where the method was invoked (that is, in the caller).

The process of unwinding control constructs and terminating the method is then repeated in each
calling method until the exception is caught or the initial program invocation method (the main
method) is terminated, in which case the program ends and the environment receives the signal (it
would usually then display diagnostic information).

Syntax and example

The constructs that may be used to handle (catch) an exception are do groups, loop loops, and select

73 This is the only case in which an expression will not be wholly evaluated, for example.

154 NetRexx Language Definition Version 3.01

constructs. Specifically, as shown in the syntax diagrams (q.v.), where the end clause can appear in
these constructs, zero or more catch clauses can be used to define exception handlers, followed by
zero or one finally clauses that describe “clean-up” code for the construct. The whole construct
continues to be ended by an end clause.

The syntax of a catch clause is shown in the syntax diagrams. It always specifies an exception type,
which may be qualified. It may optionally specify a symbol, vare, which is followed by an equals
sign. This indicates that when the exception is caught then the object representing the exception will
be assigned to the variable vare. If new, the type of the variable will be exception.

Here is an example of a program that handles some of the exceptions signalled by methods in the
Rexx class; the trace results instruction is included to show the flow of execution:

trace results
do -- could be LOOP i=1 to 10, etc.
 say 1/arg
catch DivideException
 say 'Divide exception'
catch ex=NumberFormatException
 /* 'ex' is assigned the exception object */
 say 'Bad number for division:' ex.getMessage
finally
 say 'Done!'
end

In this example, if the argument passed to the program (and hence placed in arg) is a valid number,
then its inverse is displayed. If the argument is 0, then “Divide exception” would be displayed. If
the argument were an invalid number, the message describing the bad number would be displayed. For
any other exception (such as an ExponentOverflowException), the program would end and the
environment would normally report the exception.

In all cases, the message “Done!” would be displayed; this would be true even if the body of the do
construct executed a return, leave, or iterate instruction. Only an exit instruction (see page 87)
would cause immediate termination of the construct (and the program).

Note: The finally keyword, like otherwise in the select construct, implies a semicolon after it, so the
last say instruction in the example could have appeared on the same line as the finally without an
intervening semicolon.

Exceptions after catch and finally clauses

If an exception is signalled in the instructionlist following a catch or finally clause, then the current
exception is considered handled, the instructionlist is terminated, and the new exception is signalled.
It will not be caught by catch clauses in the current construct. If it occurs in the instructionlist
following a catch clause, then any finally instructions will be executed, as usual.

Similarly, executing a return or exit instruction within either of the instructionlists completes the
handling of any pending signal.

Version 3.01 NetRexx Language Definition 155

Checked exceptions

NetRexx implementations may define certain exceptions as checked exceptions. These are exceptions
that the implementation considers it useful to check; the checked exceptions that each method may
signal are recorded. Within do groups, loop loops, and select constructs, for example, it is then
possible to report if a catch clause tries to catch a checked exception that is not signalled within the
body of the construct.

Checked exceptions that are signalled within a method (by a signal instruction or a method
invocation) but not caught by a catch clause in the method are automatically added to the signals list
for a method. Implementations that support checked exceptions are encouraged to provide options
that list the uncaught checked exceptions for methods or enforce the explicit inclusion of some or all
checked exceptions in the signals list on the method instruction.

In the reference implementation, all exceptions are checked except those that are subclasses of
java.lang.RuntimeException or java.lang.Error. These latter are considered so ubiquitous that almost
all methods would signal them.

Expressions assigned as the initial values of properties must not invoke methods that may signal
checked exceptions.

The strictsignal option on the options instruction may be used to enforce the inclusion of all uncaught
checked exceptions in methods’ signals lists; this may be used to assure that any uncaught checked
exceptions are intentional.

156 NetRexx Language Definition Version 3.01

Methods for NetRexx strings
This section describes the set of methods defined for the NetRexx string class, Rexx. These are called
built-in methods, and include character manipulation, word manipulation, conversion, and arithmetic
methods.

Implementations will also provide other methods for the Rexx class (for example, to implement the
NetRexx operators or to provide constructors with primitive arguments), but these are not part of the
NetRexx language.74

General notes on the built-in methods:

1. All methods work on a NetRexx string of type Rexx; this is referred to by the name string in the
descriptions of the methods. For example, if the word method were invoked using the term:

"Three word phrase".word(2)

then in the description of word the name string refers to the string “Three word phrase”,
and the name n refers to the string “2”.

2. All method arguments are of type Rexx and all methods return a string of type Rexx; if a
number is returned, it will be formatted as though 0 had been added with no rounding.

3. The first parenthesis in a method call must immediately follow the name of the method, with no
space in between.

4. The parentheses in a method call can be omitted if no arguments are required and the method
call is part of a compound term (see page 52).75

5. A position in a string is the number of a character in the string, where the first character is at
position 1, etc.

6. Where arguments are optional, commas may only be included between arguments that are
present (that is, trailing commas in argument lists are not permitted).

7. A pad argument, if specified, must be exactly one character long.

8. If a method has a sub-option selected by the first character of a string, that character may be in
upper or lowercase.

9. Conversion between character encodings and decimal or hexadecimal is dependent on the
machine representation (encoding) of characters and hence will return appropriately different
results for Unicode, ASCII, EBCDIC, and other implementations.

74 Details of the methods provided in the reference implementation are included in Appendix C (see page 181).
75 Unless an implementation-provided option to disallow parenthesis omission is in force.

Version 3.01 NetRexx Language Definition 157

The built-in methods
abbrev(info
[,length])

returns 1 if info is equal to the leading characters of string and info is not less
than the minimum length, length; 0 is returned if either of these conditions is not
met. length must be a non-negative whole number; the default is the length of
info.

Examples:

'Print'.abbrev('Pri') == 1
'PRINT'.abbrev('Pri') == 0
'PRINT'.abbrev('PRI',4) == 0
'PRINT'.abbrev('PRY') == 0
'PRINT'.abbrev('') == 1
'PRINT'.abbrev('',1) == 0

Note: A null string will always match if a length of 0 (or the default) is used. This
allows a default keyword to be selected automatically if desired.

Example:

say 'Enter option:'; option=ask
select /* keyword1 is to be the default */
 when 'keyword1'.abbrev(option) then ...
 when 'keyword2'.abbrev(option) then ...
 ...
 otherwise ...
 end

abs() returns the absolute value of string, which must be a number.

Any sign is removed from the number, and it is then formatted by adding zero
with a digits setting that is either nine or, if greater, the number of digits in the
mantissa of the number (excluding leading insignificant zeros). Scientific
notation is used, if necessary.

Examples:

'12.3'.abs == 12.3
' -0.307'.abs == 0.307
'123.45E+16'.abs == 1.2345E+18
'- 1234567.7654321'.abs == 1234567.7654321

b2x() Binary to hexadecimal. Converts string, a string of at least one binary (0 and/or
1) digits, to an equivalent string of hexadecimal characters. The returned string
will use uppercase Roman letters for the values A-F, and will not include any
blanks.

If the number of binary digits in the string is not a multiple of four, then up to
three '0' digits will be added on the left before conversion to make a total that is
a multiple of four.

Examples:

'11000011'.b2x == 'C3'
'10111'.b2x == '17'
'0101'.b2x == '5'
'101'.b2x == '5'
'111110000'.b2x == '1F0'

158 NetRexx Language Definition Version 3.01

center(length
[,pad])

or

centre(length
[,pad])

returns a string of length length with string centered in it, with pad characters
added as necessary to make up the required length. length must be a non-negative
whole number. The default pad character is blank. If the string is longer than
length, it will be truncated at both ends to fit. If an odd number of characters are
truncated or added, the right hand end loses or gains one more character than the
left hand end.

Examples:

'ABC'.centre(7) == ' ABC '
'ABC'.center(8,'-') == '--ABC---'
'The blue sky'.centre(8) == 'e blue s'
'The blue sky'.center(7) == 'e blue '

Note: This method may be called either centre or center, which avoids
difficulties due to the difference between the British and American spellings.

changestr(needle,
new)

returns a copy of string in which each occurrence of the needle string is replaced
by the new string. Each unique (non-overlapping) occurrence of the needle string
is changed, searching from left to right and starting from the first (leftmost)
position in string. Only the original string is searched for the needle, and each
character in string can only be included in one match of the needle.

If the needle is the null string, the result is a copy of string, unchanged.

Examples:

'elephant'.changestr('e','X') == 'XlXphant'
'elephant'.changestr('ph','X') == 'eleXant'
'elephant'.changestr('ph','hph') == 'elehphant'
'elephant'.changestr('e','') == 'lphant'
'elephant'.changestr('','!!') == 'elephant'

The countstr method (see page 160) can be used to count the number of
changes that could be made to a string in this fashion.

compare(target
[,pad])

returns 0 if string and target are the same. If they are not, the returned number is
positive and is the position of the first character that is not the same in both
strings. If one string is shorter than the other, one or more pad characters are
added on the right to make it the same length for the comparison. The default
pad character is a blank.

Examples:

'abc'.compare('abc') == 0
'abc'.compare('ak') == 2
'ab '.compare('ab') == 0
'ab '.compare('ab',' ') == 0
'ab '.compare('ab','x') == 3
'ab-- '.compare('ab','-') == 5

copies(n) returns n directly concatenated copies of string. n must be positive or 0; if 0, the
null string is returned.

Examples:

'abc'.copies(3) == 'abcabcabc'
'abc'.copies(0) == ''

Version 3.01 NetRexx Language Definition 159

''.copies(2) == ''

copyindexed(sub) copies the collection of indexed sub-values (see page 76) of sub into the
collection associated with string, and returns the modified string. The resulting
collection is the union of the two collections (that is, it contains the indexes and
their values from both collections). If a given index exists in both collections then
the sub-value of string for that index is replaced by the sub-value from sub.

The non-indexed value of string is not affected.

Example:

Following the instructions:

foo='def'
foo['a']=1
foo['b']=2
bar='ghi'
bar['b']='B'
bar['c']='C'
merged=foo.copyIndexed(bar)

then:

merged['a'] == '1'
merged['b'] == 'B'
merged['c'] == 'C'
merged['d'] == 'def'

countstr(needle) returns the count of non-overlapping occurrences of the needle string in string,
searching from left to right and starting from the first (leftmost) position in
string.

If the needle is the null string, 0 is returned.

Examples:

'elephant'.countstr('e') == '2'
'elephant'.countstr('ph') == '1'
'elephant'.countstr('') == '0'

The changestr method (see page 159) can be used to change occurrences of
needle to some other string.

c2d() Coded character to decimal. Converts the encoding of the character in string
(which must be exactly one character) to its decimal representation. The returned
string will be a non-negative number that represents the encoding of the character
and will not include any sign, blanks, insignificant leading zeros, or decimal part.

Examples:

'M'.c2d == '77' -- ASCII or Unicode
'7'.c2d == '247' -- EBCDIC
'\r'.c2d == '13' -- ASCII or Unicode
'\0'.c2d == '0'

The c2x method (see page 160) can be used to convert the encoding of a
character to a hexadecimal representation.

c2x() Coded character to hexadecimal. Converts the encoding of the character in string
(which must be exactly one character) to its hexadecimal representation
(unpacks). The returned string will use uppercase Roman letters for the values A-

160 NetRexx Language Definition Version 3.01

F, and will not include any blanks. Insignificant leading zeros are removed.

Examples:

'M'.c2x == '4D' -- ASCII or Unicode
'7'.c2x == 'F7' -- EBCDIC
'\r'.c2x == 'D' -- ASCII or Unicode
'\0'.c2x == '0'

The c2d method (see page 160) can be used to convert the encoding of a
character to a decimal number.

datatype(option) returns 1 if string matches the description requested with the option, or 0
otherwise. If string is the null string, 0 is always returned.

Only the first character of option is significant, and it may be in either uppercase
or lowercase. The following option characters are recognized:

A (Alphanumeric); returns 1 if string only contains characters from the ranges
“a-z”, “A-Z”, and “0-9”.

B (Binary); returns 1 if string only contains the characters “0” and/or “1”.

D (Digits); returns 1 if string only contains characters from the range “0-9”.

L (Lowercase); returns 1 if string only contains characters from the range “a-
z”.

M (Mixed case); returns 1 if string only contains characters from the ranges
“a-z” and “A-Z”.

N (Number); returns 1 if string is a syntactically valid NetRexx number that
could be added to '0' without error,

S (Symbol); returns 1 if string only contains characters that are valid in non-
numeric symbols (the alphanumeric characters and underscore), and does
not start with a digit. Note that both uppercase and lowercase letters are
permitted.

U (Uppercase); returns 1 if string only contains characters from the range “A-
Z”.

W (Whole Number); returns 1 if string is a syntactically valid NetRexx
number that can be added to '0' without error, and whose decimal part
after that addition, with no rounding, is zero.

X (heXadecimal); returns 1 if string only contains characters from the ranges
“a-f”, “A-F”, and “0-9”.

Examples:

'101'.datatype('B') == 1
'12.3'.datatype('D') == 0
'12.3'.datatype('N') == 1
'12.3'.datatype('W') == 0
'LaArca'.datatype('M') == 1
''.datatype('M') == 0
'Llanes'.datatype('L') == 0
'3 d'.datatype('s') == 1
'BCd3'.datatype('X') == 1
'BCgd3'.datatype('X') == 0

Version 3.01 NetRexx Language Definition 161

Note: The datatype method tests the meaning of the characters in a string,
independent of the encoding of those characters. Extra letters and Extra digits
cause datatype to return 0 except for the number tests (“N” and “W”), which
treat extra digits whose value is in the range 0-9 as though they were the
corresponding Arabic numeral.

delstr(n [,length]) returns a copy of string with the sub-string of string that begins at the nth
character, and is of length length characters, deleted. If length is not specified, or
is greater than the number of characters from n to the end of the string, the rest of
the string is deleted (including the nth character). length must be a non-negative
whole number, and n must be a positive whole number. If n is greater than the
length of string, the string is returned unchanged.

Examples:

'abcd'.delstr(3) == 'ab'
'abcde'.delstr(3,2) == 'abe'
'abcde'.delstr(6) == 'abcde'

delword(n
[,length])

returns a copy of string with the sub-string of string that starts at the nth word,
and is of length length blank-delimited words, deleted. If length is not specified,
or is greater than number of remaining words in the string, it defaults to be the
remaining words in the string (including the nth word). length must be a non-
negative whole number, and n must be a positive whole number. If n is greater
than the number of words in string, the string is returned unchanged. The string
deleted includes any blanks following the final word involved, but none of the
blanks preceding the first word involved.

Examples:

'Now is the time'.delword(2,2) == 'Now time'
'Now is the time '.delword(3) == 'Now is '
'Now time'.delword(5) == 'Now time'

d2c() Decimal to coded character. Converts the string (a NetRexx number) to a single
character, where the number is used as the encoding of the character.

string must be a non-negative whole number. An error results if the encoding
described does not produce a valid character for the implementation (for
example, if it has more significant bits than the implementation’s encoding for
characters).

Examples:

'77'.d2c == 'M' -- ASCII or Unicode
'+77'.d2c == 'M' -- ASCII or Unicode
'247'.d2c == '7' -- EBCDIC
'0'.d2c == '\0'

d2x([n]) Decimal to hexadecimal. Returns a string of hexadecimal characters of length as
needed or of length n, which is the hexadecimal (unpacked) representation of the
decimal number. The returned string will use uppercase Roman letters for the
values A-F, and will not include any blanks.

string must be a whole number, and must be non-negative unless n is specified,
or an error will result. If n is not specified, the length of the result returned is
such that there are no leading 0 characters, unless string was equal to 0 (in which

162 NetRexx Language Definition Version 3.01

case '0' is returned).

If n is specified it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length (negative
numbers are converted assuming twos-complement form). If the number is too
big to fit into n characters, it will be truncated on the left. n must be a non-
negative whole number.

Examples:

'9'.d2x == '9'
'129'.d2x == '81'
'129'.d2x(1) == '1'
'129'.d2x(2) == '81'
'127'.d2x(3) == '07F'
'129'.d2x(4) == '0081'
'257'.d2x(2) == '01'
'-127'.d2x(2) == '81'
'-127'.d2x(4) == 'FF81'
'12'.d2x(0) == ''

exists(index) returns 1 if index names a sub-value (see page 76) of string that has explicitly
been assigned a value, or 0 otherwise.

Example:

Following the instructions:

vowel=0
vowel['a']=1
vowel['b']=1
vowel['b']=null -- drops previous assignment

then:

vowel.exists('a') == '1'
vowel.exists('b') == '0'
vowel.exists('c') == '0'

format([before
[,after]])

formats (lays out) string, which must be a number.

The number, string, is first formatted by adding zero with a digits setting that is
either nine or, if greater, the number of digits in the mantissa of the number
(excluding leading insignificant zeros). If no arguments are given, the result is
precisely that of this operation.

The arguments before and after may be specified to control the number of
characters to be used for the integer part and decimal part of the result
respectively. If either of these is omitted (with no arguments specified to its
right), or is null, the number of characters used will be as many as are needed
for that part.

before must be a positive number; if it is larger than is needed to contain the
integer part, that part is padded on the left with blanks to the requested length. If
before is not large enough to contain the integer part of the number (including the
sign, for negative numbers), an error results.

after must be a non-negative number; if it is not the same size as the decimal part
of the number, the number will be rounded (or extended with zeros) to fit.
Specifying 0 for after will cause the number to be rounded to an integer (that is,

Version 3.01 NetRexx Language Definition 163

it will have no decimal part or decimal point).

Examples:

' - 12.73'.format == '-12.73'
'0.000'.format == '0'
'3'.format(4) == ' 3'
'1.73'.format(4,0) == ' 2'
'1.73'.format(4,3) == ' 1.730'
'-.76'.format(4,1) == ' -0.8'
'3.03'.format(4) == ' 3.03'
' - 12.73'.format(null,4) == '-12.7300'

Further arguments may be passed to the format method to control the use of
exponential notation. The full syntax of the method is then:

format([before[,after[,explaces[,exdigits[,exform]]]]])

The first two arguments are as already described. The other three (explaces,
exdigits, and exform) control the exponent part of the result. The default for any
of the arguments may be selected by omitting them (if there are no arguments to
be specified to their right) or by using the value null.

explaces must be a positive number; it sets the number of places (digits after the
sign of the exponent) to be used for any exponent part, the default being to use as
many as are needed. If explaces is specified and is not large enough to contain
the exponent, an error results. If explaces is specified and the exponent will be 0,
then explaces+2 blanks are supplied for the exponent part of the result.

exdigits sets the trigger point for use of exponential notation. If, after the first
formatting, the number of places needed before the decimal point exceeds
exdigits, or if the absolute value of the result is less than 0.000001, then
exponential form will be used, provided that exdigits was specified. When
exdigits is not specified, exponential notation will never be used. The current
setting of numeric digits may be used for exdigits by specifying the special word
digits (see page 133). If 0 is specified for exdigits, exponential notation is
always used unless the exponent would be 0.

exform sets the form for exponential notation (if needed). exform may be either
'Scientific' (the default) or 'Engineering'. Only the first character of
exform is significant and it may be in uppercase or in lowercase. The current
setting of numeric form may be used by specifying the special word form (see
page 133). If engineering form is in effect, up to three digits (plus sign) may be
needed for the integer part of the result (before).

Examples:

'12345.73'.format(null,null,2,2) == '1.234573E+04'
'12345.73'.format(null,3,null,0) == '1.235E+4'
'1.234573'.format(null,3,null,0) == '1.235'
'123.45'.format(null,3,2,0) == '1.235E+02'
'1234.5'.format(null,3,2,0,'e') == '1.235E+03'
'1.2345'.format(null,3,2,0) == '1.235 '
'12345.73'.format(null,null,3,6) == '12345.73 '
'12345e+5'.format(null,3) == '1234500000.000'

Implementation minimum: If exponents are supported in an implementation,
then they must be supported for exponents whose absolute value is at least as

164 NetRexx Language Definition Version 3.01

large as the largest number that can be expressed as an exact integer in default
precision, i.e., 999999999. Therefore, values for explaces of up to 9 should also
be supported.

insert(new [,n
[,length [,pad]]])

inserts the string new, padded or truncated to length length, into a copy of the
target string after the nth character; the string with any inserts is returned. length
and n must be a non-negative whole numbers. If n is greater than the length of
the target string, padding is added before the new string also. The default value
for n is 0, which means insert before the beginning of the string. The default
value for length is the length of new. The default pad character is a blank.

Examples:

'abc'.insert('123') == '123abc'
'abcdef'.insert(' ',3) == 'abc def'
'abc'.insert('123',5,6) == 'abc 123 '
'abc'.insert('123',5,6,'+') == 'abc++123+++'
'abc'.insert('123',0,5,'-') == '123--abc'

lastpos(needle
[,start])

returns the position of the last occurrence of the string needle in string (the
“haystack”), searching from right to left. If the string needle is not found, or is
the null string, 0 is returned. By default the search starts at the last character of
string and scans backwards. This may be overridden by specifying start, the
point at which to start the backwards scan. start must be a positive whole
number, and defaults to the value string.length if larger than that value or if
not specified (with a minimum default value of one).

Examples:

'abc def ghi'.lastpos(' ') == 8
'abc def ghi'.lastpos(' ',7) == 4
'abcdefghi'.lastpos(' ') == 0
'abcdefghi'.lastpos('cd') == 3
''.lastpos('?') == 0

left(length [,pad]) returns a string of length length containing the left-most length characters of
string. The string is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank. length must be a non-negative
whole number. This method is exactly equivalent to string.substr(1, length [,
pad]).

Examples:

'abc d'.left(8) == 'abc d '
'abc d'.left(8,'.') == 'abc d...'
'abc defg'.left(6) == 'abc de'

length() returns the number of characters in string.

Examples:

'abcdefgh'.length == 8
''.length == 0

lower([n [,length]]) returns a copy of string with any uppercase characters in the sub-string of string
that begins at the nth character, and is of length length characters, replaced by
their lowercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character in

Version 3.01 NetRexx Language Definition 165

string). If n is greater than the length of string, the string is returned unchanged.

length must be a non-negative whole number. If length is not specified, or is
greater than the number of characters from n to the end of the string, the rest of
the string (including the nth character) is assumed.

Examples:

'SumA'.lower == 'suma'
'SumA'.lower(2) == 'Suma'
'SuMB'.lower(1,1) == 'suMB'
'SUMB'.lower(2,2) == 'SumB'
''.lower == ''

max(number) returns the larger of string and number, which must both be numbers. If they
compare equal (that is, when subtracted, the result is 0), then string is selected for
the result.

The comparison is effected using a numerical comparison with a digits setting
that is either nine or, if greater, the larger of the number of digits in the mantissas
of the two numbers (excluding leading insignificant zeros).

The selected result is formatted by adding zero to the selected number with a
digits setting that is either nine or, if greater, the number of digits in the mantissa
of the number (excluding leading insignificant zeros). Scientific notation is used,
if necessary.

Examples:

0.max(1) ==1
'-1'.max(1) ==1
'+1'.max(-1) ==1
'1.0'.max(1.00) =='1.0'
'1.00'.max(1.0) =='1.00'
'123456700000'.max(1234567E+5) == '123456700000'
'1234567E+5'.max('123456700000') == '1.234567E+11'

min(number) returns the smaller of string and number, which must both be numbers. If they
compare equal (that is, when subtracted, the result is 0), then string is selected for
the result.

The comparison is effected using a numerical comparison with a digits setting
that is either nine or, if greater, the larger of the number of digits in the mantissas
of the two numbers (excluding leading insignificant zeros).

The selected result is formatted by adding zero to the selected number with a
digits setting that is either nine or, if greater, the number of digits in the mantissa
of the number (excluding leading insignificant zeros). Scientific notation is used,
if necessary.

Examples:

0.min(1) ==0
'-1'.min(1) =='-1'
'+1'.min(-1) =='-1'
'1.0'.min(1.00) =='1.0'
'1.00'.min(1.0) =='1.00'
'123456700000'.min(1234567E+5) == '123456700000'
'1234567E+5'.min('123456700000') == '1.234567E+11'

overlay(new [,n overlays the string new, padded or truncated to length length, onto a copy of the

166 NetRexx Language Definition Version 3.01

[,length [,pad]]]) target string starting at the nth character; the string with any overlays is returned.
Overlays may extend beyond the end of the original string. If length is specified
it must be a non-negative whole number. If n is greater than the length of the
target string, padding is added before the new string also. The default pad
character is a blank, and the default value for n is 1. n must be greater than 0. The
default value for length is the length of new.

Examples:

'abcdef'.overlay(' ',3) == 'ab def'
'abcdef'.overlay('.',3,2) == 'ab. ef'
'abcd'.overlay('qq') == 'qqcd'
'abcd'.overlay('qq',4) == 'abcqq'
'abc'.overlay('123',5,6,'+') == 'abc+123+++'

pos(needle
[,start])

returns the position of the string needle, in string (the “haystack”), searching
from left to right. If the string needle is not found, or is the null string, 0 is
returned. By default the search starts at the first character of string (that is, start
has the value 1). This may be overridden by specifying start (which must be a
positive whole number), the point at which to start the search; if start is greater
than the length of string then 0 is returned.

Examples:

'Saturday'.pos('day') == 6
'abc def ghi'.pos('x') == 0
'abc def ghi'.pos(' ') == 4
'abc def ghi'.pos(' ',5) == 8

reverse() returns a copy of string, swapped end for end.

Examples:

'ABc.'.reverse == '.cBA'
'XYZ '.reverse == ' ZYX'
'Tranquility'.reverse == 'ytiliuqnarT'

right(length
[,pad])

returns a string of length length containing the right-most length characters of
string – that is, padded with pad characters (or truncated) on the left as needed.
The default pad character is a blank. length must be a non-negative whole
number.

Examples:

'abc d'.right(8) == ' abc d'
'abc def'.right(5) == 'c def'
'12'.right(5,'0') == '00012'

sequence(final) returns a string of all characters, in ascending order of encoding, between and
including the character in string and the character in final. string and final must
be single characters; if string is greater than final, an error is reported.

Examples:

'a'.sequence('f') == 'abcdef'
'\0'.sequence('\x03') == '\x00\x01\x02\x03'
'\ufffe'.sequence('\uffff') == '\ufffe\uffff'

sign() returns a number that indicates the sign of string, which must be a number. string
is first formatted, just as though the operation “string+0” had been carried out
with sufficient digits to avoid rounding. If the number then starts with '-' then

Version 3.01 NetRexx Language Definition 167

'-1' is returned; if it is '0' then '0' is returned; and otherwise '1' is returned.

Examples:

'12.3'.sign == 1
'0.0'.sign == 0
' -0.307'.sign == -1

space([n [,pad]]) returns a copy of string with the blank-delimited words in string formatted with
n (and only n) pad characters between each word. n must be a non-negative
whole number. If n is 0, all blanks are removed. Leading and trailing blanks are
always removed. The default for n is 1, and the default pad character is a blank.

Examples:

'abc def '.space == 'abc def'
' abc def '.space(3) == 'abc def'
'abc def '.space(1) == 'abc def'
'abc def '.space(0) == 'abcdef'
'abc def '.space(2,'+') == 'abc++def'

strip([option
[,char]])

returns a copy of string with Leading, Trailing, or Both leading and trailing
characters removed, when the first character of option is L, T, or B respectively
(these may be given in either uppercase or lowercase). The default is B. The
second argument, char, specifies the character to be removed, with the default
being a blank. If given, char must be exactly one character long.

Examples:

' ab c '.strip == 'ab c'
' ab c '.strip('L') == 'ab c '
' ab c '.strip('t') == ' ab c'
'12.70000'.strip('t',0) == '12.7'
'0012.700'.strip('b',0) == '12.7'

substr(n [,length
[,pad]])

returns the sub-string of string that begins at the nth character, and is of length
length, padded with pad characters if necessary. n must be a positive whole
number, and length must be a non-negative whole number. If n is greater than
string.length, then only pad characters can be returned.

If length is omitted it defaults to be the rest of the string (or 0 if n is greater than
the length of the string). The default pad character is a blank.

Examples:

'abc'.substr(2) == 'bc'
'abc'.substr(2,4) == 'bc '
'abc'.substr(5,4) == ' '
'abc'.substr(2,6,'.') == 'bc....'
'abc'.substr(5,6,'.') == '......'

Note: In some situations the positional (numeric) patterns of parsing templates
are more convenient for selecting sub-strings, especially if more than one sub-
string is to be extracted from a string.

subword(n
[,length])

returns the sub-string of string that starts at the nth word, and is up to length
blank-delimited words long. n must be a positive whole number; if greater than
the number of words in the string then the null string is returned. length must be a
non-negative whole number. If length is omitted it defaults to be the remaining
words in the string. The returned string will never have leading or trailing blanks,

168 NetRexx Language Definition Version 3.01

but will include all blanks between the selected words.

Examples:

'Now is the time'.subword(2,2) == 'is the'
'Now is the time'.subword(3) == 'the time'
'Now is the time'.subword(5) == ''

translate(tableo,
tablei [,pad])

returns a copy of string with each character in string either unchanged or
translated to another character.

The translate method acts by searching the input translate table, tablei, for
each character in string. If the character is found in tablei (the first, leftmost,
occurrence being used if there are duplicates) then the corresponding character in
the same position in the output translate table, tableo, is used in the result string;
otherwise the original character found in string is used. The result string is
always the same length as string.

The translate tables may be of any length, including the null string. The output
table, tableo, is padded with pad or truncated on the right as necessary to be the
same length as tablei. The default pad is a blank.

Examples:

'abbc'.translate('&','b') == 'a&&c'
'abcdef'.translate('12','ec') == 'ab2d1f'
'abcdef'.translate('12','abcd','.') == '12..ef'
'4123'.translate('abcd','1234') == 'dabc'
'4123'.translate('hods','1234') == 'shod'

Note: The last two examples show how the translate method may be used to
move around the characters in a string. In these examples, any 4-character string
could be specified as the first argument and its last character would be moved to
the beginning of the string. Similarly, the term:

'gh.ef.abcd'.translate(19970827,'abcdefgh')

(which returns “27.08.1997”) shows how a string (in this case perhaps a date)
might be re-formatted and merged with other characters using the translate
method.

trunc([n]) returns the integer part of string, which must be a number, with n decimal places
(digits after the decimal point). n must be a non-negative whole number, and
defaults to zero.

The number string is formatted by adding zero with a digits setting that is either
nine or, if greater, the number of digits in the mantissa of the number (excluding
leading insignificant zeros). It is then truncated to n decimal places (or trailing
zeros are added if needed to make up the specified length). If n is 0 (the default)
then an integer with no decimal point is returned. The result will never be in
exponential form.

Examples:

'12.3'.trunc == 12
'127.09782'.trunc(3) == 127.097
'127.1'.trunc(3) == 127.100
'127'.trunc(2) == 127.00
'0'.trunc(2) == 0.00

Version 3.01 NetRexx Language Definition 169

upper([n
[,length]])

returns a copy of string with any lowercase characters in the sub-string of string
that begins at the nth character, and is of length length characters, replaced by
their uppercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character in
string). If n is greater than the length of string, the string is returned unchanged.

length must be a non-negative whole number. If length is not specified, or is
greater than the number of characters from n to the end of the string, the rest of
the string (including the nth character) is assumed.

Examples:

'Fou-Baa'.upper == 'FOU-BAA'
'Mad Sheep'.upper == 'MAD SHEEP'
'Mad sheep'.upper(5) == 'Mad SHEEP'
'Mad sheep'.upper(5,1) == 'Mad Sheep'
'Mad sheep'.upper(5,4) == 'Mad SHEEp'
'tinganon'.upper(1,1) == 'Tinganon'
''.upper == ''

verify(reference
[,option [,start]])

verifies that string is composed only of characters from reference, by returning
the position of the first character in string that is not also in reference. If all the
characters were found in reference, 0 is returned.

The option may be either 'Nomatch' (the default) or 'Match'. Only the first
character of option is significant and it may be in uppercase or in lowercase. If
'Match' is specified, the position of the first character in string that is in
reference is returned, or 0 is returned if none of the characters were found.

The default for start is 1 (that is, the search starts at the first character of string).
This can be overridden by giving a different start point, which must be positive.

If string is the null string, the method returns 0, regardless of the value of the
option:. Similarly if start is greater than string.length, 0 is returned.

If reference is the null string, then the returned value is the same as the value
used for start, unless 'Match' is specified as the option, in which case 0 is
returned.

Examples:

'123'.verify('1234567890') == 0
'1Z3'.verify('1234567890') == 2
'AB4T'.verify('1234567890','M') == 3
'1P3Q4'.verify('1234567890','N',3) == 4
'ABCDE'.verify('','n',3) == 3
'AB3CD5'.verify('1234567890','m',4) == 6

word(n) returns the nth blank-delimited word in string. n must be positive. If there are
fewer than n words in string, the null string is returned. This method is exactly
equivalent to string.subword(n,1).

Examples:

'Now is the time'.word(3) == 'the'
'Now is the time'.word(5) == ''

wordindex(n) returns the character position of the nth blank-delimited word in string. n must be
positive. If there are fewer than n words in the string, 0 is returned.

170 NetRexx Language Definition Version 3.01

Examples:

'Now is the time'.wordindex(3) == 8
'Now is the time'.wordindex(6) == 0

wordlength(n) returns the length of the nth blank-delimited word in string. n must be positive. If
there are fewer than n words in the string, 0 is returned.

Examples:

'Now is the time'.wordlength(2) == 2
'Now comes the time'.wordlength(2) == 5
'Now is the time'.wordlength(6) == 0

wordpos(phrase
[,start])

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string.
Multiple blanks between words in either phrase or string are treated as a single
blank for the comparison, but otherwise the words must match exactly. Similarly,
leading or trailing blanks on either string are ignored. If phrase is not found, or
contains no words, 0 is returned.

By default the search starts at the first word in string. This may be overridden by
specifying start (which must be positive), the word at which to start the search.

Examples:

'now is the time'.wordpos('the') == 3
'now is the time'.wordpos('The') == 0
'now is the time'.wordpos('is the') == 2
'now is the time'.wordpos('is the') == 2
'now is the time'.wordpos('is time') == 0
'To be or not to be'.wordpos('be') == 2
'To be or not to be'.wordpos('be',3) == 6

words() returns the number of blank-delimited words in string.

Examples:

'Now is the time'.words == 4
' '.words == 0
''.words == 0

x2b() Hexadecimal to binary. Converts string (a string of at least one hexadecimal
characters) to an equivalent string of binary digits. Hexadecimal characters may
be any decimal digit character (0-9) or any of the first six alphabetic characters
(a-f), in either lowercase or uppercase.

string may be of any length; each hexadecimal character with be converted to a
string of four binary digits. The returned string will have a length that is a
multiple of four, and will not include any blanks.

Examples:

'C3'.x2b == '11000011'
'7'.x2b == '0111'
'1C1'.x2b == '000111000001'

x2c() Hexadecimal to coded character. Converts the string (a string of hexadecimal
characters) to a single character (packs). Hexadecimal characters may be any
decimal digit character (0-9) or any of the first six alphabetic characters (a-f), in
either lowercase or uppercase.

Version 3.01 NetRexx Language Definition 171

string must contain at least one hexadecimal character; insignificant leading
zeros are removed, and the string is then padded with leading zeros if necessary
to make a sufficient number of hexadecimal digits to describe a character
encoding for the implementation.

An error results if the encoding described does not produce a valid character for
the implementation (for example, if it has more significant bits than the
implementation’s encoding for characters).

Examples:

'004D'.x2c == 'M' -- ASCII or Unicode
'4d'.x2c == 'M' -- ASCII or Unicode
'A2'.x2c == 's' -- EBCDIC
'0'.x2c == '\0'

The d2c method (see page 162) can be used to convert a NetRexx number to the
encoding of a character.

x2d([n]) Hexadecimal to decimal. Converts the string (a string of hexadecimal characters)
to a decimal number, without rounding. If string is the null string, 0 is returned.

If n is not specified, string is taken to be an unsigned number.

Examples:

'0E'.x2d == 14
'81'.x2d == 129
'F81'.x2d == 3969
'FF81'.x2d == 65409
'c6f0'.x2d == 50928

If n is specified, string is taken as a signed number expressed in n hexadecimal
characters. If the most significant (left-most) bit is zero then the number is
positive; otherwise it is a negative number in twos-complement form. In both
cases it is converted to a NetRexx number which may, therefore, be negative. If n
is 0, 0 is always returned.

If necessary, string is padded on the left with '0' characters (note, not “sign-
extended”), or truncated on the left, to length n characters; (that is, as though
string.right(n, '0') had been executed.)

Examples:

'81'.x2d(2) == -127
'81'.x2d(4) == 129
'F081'.x2d(4) == -3967
'F081'.x2d(3) == 129
'F081'.x2d(2) == -127
'F081'.x2d(1) == 1
'0031'.x2d(0) == 0

The c2d method (see page 160) can be used to convert a character to a decimal
representation of its encoding.

172 NetRexx Language Definition Version 3.01

Appendix A – A Sample NetRexx Program

This appendix includes a short program, called qtime, which is an example of a “real” NetRexx
program. The programs included elsewhere in this document have been contrived to illustrate specific
points. By contrast, qtime is a simple but useful tool that genuinely improves the human factors of
computer systems. People frequently wish to know the time of day, and this program presents this
information in a natural way.

The style used for this example is the same as that used throughout the document, with all symbols
except those describing classes being written in lower case. Other NetRexx programming styles are
possible, of course; NetRexx syntax is designed to permit a wide variety of styles with a minimum of
punctuation.

The qtime program is a modification of one of the first Rexx programs ever written (much of the
program is identical). The main changes are:

• Indexed variables (brackets notation) are used instead of Rexx stems.

• The word method from the Rexx class is used instead of the word Rexx built-in function.

• The Java Date class is used to determine the current time.

Version 3.01 Appendix A – A Sample NetRexx Program 173

qtime.nrx – Query Time

/*--*/
/* qtime.nrx. This program displays the time in English. */
/* If "?" is given as the first argument word then the */
/* program displays a description of itself. */
/*--*/

/*--------- First process any argument words -------------*/
parse arg parm . /* get the first argument word */
select
 when parm='?' then tell /* say what we do */
 when parm='' then nop /* OK (no first argument) */
 otherwise
 say 'The only valid argument to QTIME is "?". The word'
 say 'that you supplied ("'parm'") has been ignored.'
 tell /* usually helpful to describe the program */
 end

/*-------- Now start processing in earnest ---------------*/
/* Nearness phrases - using associative array lookup */
near='' /* default */
near[0]='' /* exact */
near[1]=' just gone'; near[2]=' just after' /* after */
near[3]=' nearly'; near[4]=' almost' /* before */

/* Extract the hours, minutes, and seconds from the time. */
/* Use the Java Date class to get the time-of-day. */
parse Date() . . . now . /* time is the fourth word */
parse now hour':'min':'sec

if sec>29 then min=min+1 /* round up minutes */
mod=min//5 /* where we are in 5-minute bracket */
out="It's"near[mod] /* start building the result */
if min>32 then hour=hour+1 /* we are TO the hour... */
min=min+2 /* shift minutes to straddle a 5-minute point */

/* Now special-case the result for Noon and Midnight. */
if hour//12=0 & min//60<=4 then do
 if hour=12 then say out 'Noon.'
 else say out 'Midnight.'
 exit /* we are finished here */
 end

/* Find five-minute segment and convert to 12-hour clock. */
min=min-(min//5) /* find nearest 5 mins */
if hour>12
 then hour=hour-12 /* get rid of 24-hour clock */
 else if hour=0 then hour=12 /* .. and allow for midnight */

174 Appendix A – A Sample NetRexx Program Version 3.01

continued…

/* Determine the phrase to use for each 5-minute segment. */
select
 when min= 0 then nop /* add "o'clock" later */
 when min=60 then min=0 /* ditto */
 when min= 5 then out=out 'five past'
 when min=10 then out=out 'ten past'
 when min=15 then out=out 'a quarter past'
 when min=20 then out=out 'twenty past'
 when min=25 then out=out 'twenty-five past'
 when min=30 then out=out 'half past'
 when min=35 then out=out 'twenty-five to'
 when min=40 then out=out 'twenty to'
 when min=45 then out=out 'a quarter to'
 when min=50 then out=out 'ten to'
 when min=55 then out=out 'five to'
 end

numbers='one two three four five six'- /* (continuation) */
 'seven eight nine ten eleven twelve '
out=out numbers.word(hour) /* add the hour number */
if min=0 then out=out "o'clock" /* and o'clock if exact */

say out'.' /* display the final result */
exit

/*--*/
/* Tell: function that describes the use of the program. */
/*--*/
method tell static
 say 'QTIME displays the current time in natural English.'
 say 'Call without any arguments to display the time, or'
 say 'with "?" to display this information.'
 say 'British English idioms are used in this program.'
 say /* space -- we are about to continue and show time. */
 return

/* Mike Cowlishaw, December 1979 - January 1985 */
/* NetRexx version March 1996 */

Version 3.01 Appendix A – A Sample NetRexx Program 175

Appendix B – JavaBean Support

This appendix describes an experimental feature, indirect properties, which is supported by the
NetRexx reference implementation.

The intention of the feature is to make it easier to write a certain kind of class known as a JavaBean.
Almost all JavaBeans will have properties, which are data items that a user of a JavaBean is expected
to be able to customize (for example, the text on a pushbutton). The names and types of the properties
of a JavaBean are inferred from “design patterns” (in this context, conventions for naming methods)
or from PropertyDescriptor objects associated with the JavaBean.

The JavaBean properties do not necessarily correspond to instance variables in the class – although
very often they do. The JavaBean specification does not guarantee that JavaBean properties that can
be set can also be inspected, nor does it describe how ambiguities of naming and method signatures
are to be handled.

The NetRexxC compiler allows a more rigorous treatment of JavaBean properties, by allowing an
optional attribute of properties in a class that declares them to be indirect properties. Indirect
properties are properties of a known type that are private to the class, but which are expected to be
publicly accessible indirectly, though certain conventional method calls.

Declaring properties to be indirect offers the following advantages:

• For many simple cases, the access methods for the properties can be generated automatically;
there is no need to explicitly code them in the source file for the class. This is especially helpful
for Indexed Properties (where four methods are needed, in general).

• Where access methods are explicitly provided in the class, they can be checked for correct form,
signature and accessibility. This detects errors at compile time that otherwise would only be
determined by testing.

• Similarly, attention can be drawn to the presence of methods that may be intended to be an
access method for an indirect property, but will not be recognized as such by builders.

The next section describes the use of indirect properties in more detail.

Version 3.01 Appendix B – JavaBean Support 177

Indirect properties
The properties instruction (see page 115) is used to define the attributes of following property
variables. The visibility of properties may include a new alternative: indirect. Properties with this form
of visibility are known as indirect properties. These are properties of a known type that are private to
the class, but which are expected to be publicly accessible indirectly, though certain conventional
method calls.

For example, consider the simple program:

class Sandwich extends Canvas implements Serializable
 properties indirect
 slices=Color.gray
 filling=Color.red

 method Sandwich
 resize(100,30)

 method paint(g=Graphics)
 g.setColor(slices)
 g.fillRect(0, 0, size.width, size.height)
 g.setColor(filling)
 g.fillRect(12, 12, size.width-12, size.height-12)

This declares the Sandwich class as having two indirect properties, called slices and filling,
both being of type java.awt.Color.

In the example, no access methods are provided for the properties, so the compiler will add them. By
implementation-dependent convention, the names are prefixed with verbs such as get and set, etc.,
and have the first character of their name uppercased to form the method names. Hence, in this Java-
based example, the following four methods are added:

method getSlices returns java.awt.Color
 return slices
method getFilling returns java.awt.Color
 return filling
method setSlices($1=java.awt.Color)
 slices=$1
method setFilling($2=java.awt.Color)
 filling=$2

(where $1 and $2 are “hidden” names used for accessing the method arguments).

Note that the indirect attribute for a property is an alternative to the public, private, and inheritable,
and shared attributes. Like private properties, indirect properties can only be accessed directly by
name from within the class in which they occur; other classes can only access them using the access
methods (or other methods that may use, or have a side-effect on, the properties).

Indirect properties may be constant (implying that only a get method is generated or allowed, though
the private property may be changed by methods within the class) or transient (see page 116). They
may not be static or volatile.

In detail, the rules used for generating automatic methods for a property whose name is xxxx are as
follows:

1. A method called getXxxx which returns the value of the property is generated. The returned
value will have the same type as xxxx.

2. If the type of xxxx is boolean then the generated method will be called isXxxx instead of

178 Appendix B – JavaBean Support Version 3.01

getXxxx.

3. If the property is not constant then a method for setting the property will also be generated.
This will be called setXxxx, and take a single argument of the same type as xxxx. This
assigns the argument to the property and returns no value.

If the property has an array type (for example, char[]), then it must only have a single dimension.
Two further methods may then be generated, according to the rules:

1. A method called getXxxx which takes a single int as an argument and which returns an item
from the property array is generated. The returned value will have the same type as xxxx,
without the []. The integer argument is used to index into the array.

2. As before, if the result type of the method would be boolean then the name of the method will
be isXxxx instead of getXxxx.

3. If the property is not constant then a method for setting an item in the property array will also
be generated. This will be called setXxxx, and take two arguments: the first is an int that is
used to select the item to be changed, and the second is an undimensioned argument of the same
type as xxxx. It assigns the second argument to the item in the property array indexed by the
first argument, and returns no value.

For example, for an indirect property declared thus:

properties indirect
 fred=foo.Bar[]

the four methods generated would be:

method getFred returns foo.Bar[]; return fred
method getFred($1=int) returns foo.Bar; return fred[$1]
method setFred($2=foo.Bar[]); fred=$2
method setFred($3=int, $4=foo.Bar); fred[$3]=$4

Note that in all cases a method will only be generated if it would not exactly match a method explicitly
coded in the current class.

Explicit provision of access methods

Often, for example when an indirect property has an on-screen representation, it is desirable to redraw
the property when the property is changed (and in more complicated cases, there may be interactions
between properties). These and other actions will require extra processing which will not be carried
out by automatically generated methods. To add this processing the access methods will have to be
coded explicitly. In the “Sandwich” example, we only need to supply the set methods, perhaps by
adding the following to the example class above:

method setSlices(col=Color)
 slices=col -- update the property
 this.repaint -- redraw the component

method setFilling(col=Color)
 filling=col
 this.repaint

If we add these two methods, they will no longer be added automatically (the two get methods will
continue to be provided automatically, however). Further, since the names match possible access
methods for properties that are declared to be indirect, the compiler will check the method declaration:
the method signatures and return type (if any) must be correct, for example. Also, since the names of

Version 3.01 Appendix B – JavaBean Support 179

access methods are case-sensitive (in a Java environment), you will be warned if a method appears to
be intended to be an access method but the case of one or more letters is wrong.

Specifically, the checks carried out are as follows:

1. For methods whose names exactly match a potential access method for an indirect property (that
is, start with is, get, or set, which is then followed by the name of an indirect property with
the first character of the name uppercased):

◦ The argument list for (signature of) the method must match one of those that could possibly
be automatically generated for the property.

◦ The returns type (if any) must match the expected returns type for that method.

◦ If the returns type is simply boolean, then the method name must start with is. Conversely,
if the method name starts with is then the returns type must be just boolean.

◦ If the property is constant then the name of the method cannot start with set.

◦ A warning is given if the method is not public (the default).

2. For methods whose names match a potential access method, as above, except in case:

◦ A warning is given that the method in question may be intended to be an indirect property
access method, but will not be recognized as such by builders.

These checks detect a wide variety of errors at compile time, hence speeding the development of
classes that use indirect properties.

180 Appendix B – JavaBean Support Version 3.01

Appendix C – The netrexx.lang Package

This appendix documents the netrexx.lang package, which includes the classes used for creating
string objects of type Rexx along with several classes that are often used while running NetRexx
programs.

This appendix describes the public methods and properties of these classes, as implemented by the
reference implementation. It does not include those “built-in” Methods for NetRexx strings (see page
157) in the Rexx class that form part of the NetRexx language, or those classes and methods that are
internal “helper” components (which, for example, are used as repositories for rarely-executed code).

The classes in the netrexx.lang package are:

• The Exception classes (see page 182)

• Rexx (see page 183)

• RexxIO (helper class, for say and ask)

• RexxNode (helper class, for indexed strings)

• RexxOperators interface (see page 187)

• RexxParse (helper class, for parse)

• RexxSet (see page 188)

• RexxTrace (helper class, for trace)

• RexxUtil (helper class, for the Rexx class)

• RexxWords (helper class, for the Rexx class)

Version 3.01 Appendix C – The netrexx.lang Package 181

Exception classes
The classes provided for exceptions in the netrexx.lang package are all subclasses of
java.lang.RuntimeException and all have the same content. Each has two constructors: one
taking no argument and the other taking a string of type java.lang.String, which is used for
additional detail describing the exception.

The Exceptions are signalled as follows.

BadArgumentException signalled when an argument to a method is incorrect.

BadColumnException signalled when a column number in a parsing template is not valid
(for example, not a number).

BadNumericException signalled when a numeric digits instruction tries to set a value that is
not a whole number, or is not positive, or is more than nine digits.

DivideException signalled when an error occurs during a division. This may be due to
an attempt to divide by zero, or when the intermediate result of an
integer divide or remainder operation is not valid.

ExponentOverflowException signalled when the exponent resulting from an operation would
require more than nine digits.

NoOtherwiseException signalled when a select construct does not supply an otherwise
clause and none of expressions on the when clauses resulted in '1'.

NotCharacterException signalled when a conversion from a string to a single character was
attempted but the string was not exactly one character long.

NotLogicException signalled when a conversion from a string to a boolean was attempted
but the string was neither the string '0' nor the string '1'.

Other exceptions, from the java.lang package, may also be signalled, for example
NumberFormatException or NullPointerException.

182 Appendix C – The netrexx.lang Package Version 3.01

The Rexx class
The class netrexx.lang.Rexx implements the NetRexx string class, and includes the “built-in”
Methods for NetRexx strings (see page 157).

Described here are the platform-dependent methods as provided in the reference implementation:
constructors (see page 183) for the class, the methods for arithmetic operations (see page 184), and
miscellaneous methods (see page 186) intended for general use.

The class netrexx.lang.Rexx is serializable.

Rexx constructors
These constructors all create a string of type netrexx.lang.Rexx.

Rexx(arg=boolean) Constructs a string which will have the value '1' if arg is 1 (true) or the value
'0' if arg is 0 (false).

Rexx(arg=byte) Constructs a string which is the decimal representation of the 8-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a
leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=char) Constructs a string of length 1 whose first and only character is a copy of arg.

Rexx(arg=char[]) Constructs a string by copying the characters of the character array arg in
sequence. The length of the string is the number of elements in the character
array (that is, arg.length).

Rexx(arg=int) Constructs a string which is the decimal representation of the 32-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a
leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=double) Constructs a string which is the decimal representation of the 64-bit signed
binary floating point number arg.

(The precise format of the result may change and will be defined later.)

Rexx(arg=float) Constructs a string which is the decimal representation of the 32-bit signed
binary floating point number arg.

(The precise format of the result may change and will be defined later.)

Rexx(arg=long) Constructs a string which is the decimal representation of the 64-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a
leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=Rexx) Constructs a string which is copy of arg, which is of type
netrexx.lang.Rexx. arg must not be null. Any sub-values (see page 76)
are ignored (that is, they are not present in the object returned by the
constructor).

Rexx(arg=short) Constructs a string which is the decimal representation of the 16-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with a

Version 3.01 Appendix C – The netrexx.lang Package 183

leading minus sign (hyphen) if arg is negative. A leading zero will be present
only if arg is zero.

Rexx(arg=String) Constructs a NetRexx string by copying the characters of arg, which is of type
java.lang.String, in sequence. The length of the string is same as the
length of arg (that is, arg.length()). arg must not be null.

Rexx(arg=String[]) Constructs a NetRexx string by concatenating the elements of the
java.lang.String array arg together in sequence with a blank between
each pair of elements. This may be used for converting the argument word
array passed to the main method of a Java application into a single string.

If the number of elements of arg is zero then an empty string (of length 0) is
returned. Otherwise, the length of the string is the sum of the lengths of the
elements of arg, plus the number of elements of arg, less one.

arg must not be null.

Rexx arithmetic methods
These methods implement the NetRexx arithmetic operators, as described in the section on Numbers
and arithmetic (see page 142). Each corresponds to and implements a method in the RexxOperators
interface class (see page 187).

Each of the methods here takes a RexxSet (see page 188) object as an argument. This argument
provides the numeric settings for the operation; if null is provided for the argument then the default
settings are used (digits=9, form=scientific).

For monadic operators, only the RexxSet argument is present; the operation acts upon the current
object. For dyadic operators, the RexxSet argument and a Rexx argument are present; the operation
acts with the current object being the left-hand operand and the second argument being the right-hand
operand. For example, under default numeric settings, the expression:

award+extra

(where award and extra are references to objects of type Rexx) could be written as:

award.OpAdd(null, extra)

which would return the result of adding award and extra under the default numeric settings.

OpAdd(set=RexxSet,
rhs=Rexx)

Implements the NetRexx + (Add) operator, and returns the result as a
string of type Rexx.

OpAnd(set=RexxSet,
rhs=Rexx)

Implements the NetRexx & (And) operator, and returns a result (0 or 1)
of type boolean.

OpCc(set=RexxSet,
rhs=Rexx)

Implements the NetRexx || or abuttal (Concatenate without blank)
operator, and returns the result as a string of type Rexx.

OpCcblank(set=RexxSet,
rhs=Rexx)

Implements the NetRexx blank (Concatenate with blank) operator, and
returns the result as a string of type Rexx.

OpDiv(set=RexxSet,
rhs=Rexx)

Implements the NetRexx / (Divide) operator, and returns the result as a
string of type Rexx.

OpDivI(set=RexxSet,
rhs=Rexx)

Implements the NetRexx % (Integer divide) operator , and returns the
result as a string of type Rexx.

184 Appendix C – The netrexx.lang Package Version 3.01

OpEq(set=RexxSet,
rhs=Rexx)

Implements the NetRexx = (Equal) operator, and returns a result (0 or 1)
of type boolean.

OpEqS(set=RexxSet,
rhs=Rexx)

Implements the NetRexx == (Strictly equal) operator, and returns a result
(0 or 1) of type boolean.

OpGt(set=RexxSet,
rhs=Rexx)

Implements the NetRexx > (Greater than) operator, and returns a result
(0 or 1) of type boolean.

OpGtEq(set=RexxSet,
rhs=Rexx)

Implements the NetRexx >= (Greater than or equal) operator, and returns
a result (0 or 1) of type boolean.

OpGtEqS(set=RexxSet,
rhs=Rexx)

Implements the NetRexx >>= (Strictly greater than or equal) operator,
and returns a result (0 or 1) of type boolean.

OpGtS(set=RexxSet,
rhs=Rexx)

Implements the NetRexx >> (Strictly greater than) operator, and returns
a result (0 or 1) of type boolean.

OpLt(set=RexxSet,
rhs=Rexx)

Implements the NetRexx < (Less than) operator, and returns a result (0 or
1) of type boolean.

OpLtEq(set=RexxSet,
rhs=Rexx)

Implements the NetRexx <= (Less than or equal) operator, and returns a
result (0 or 1) of type boolean.

OpLtEqS(set=RexxSet,
rhs=Rexx)

Implements the NetRexx <<= (Strictly less than or equal) operator, and
returns a result (0 or 1) of type boolean.

OpLtS(set=RexxSet,
rhs=Rexx)

Implements the NetRexx << (Strictly less than) operator, and returns a
result (0 or 1) of type boolean.

OpMinus(set=RexxSet) Implements the NetRexx Prefix - (Minus) operator , and returns the
result as a string of type Rexx.

OpMult(set=RexxSet,
rhs=Rexx)

Implements the NetRexx * (Multiply) operator , and returns the result as
a string of type Rexx.

OpNot(set=RexxSet) Implements the NetRexx Prefix \ (Not) operator, and returns a result (0
or 1) of type boolean.

OpNotEq(set=RexxSet,
rhs=Rexx)

Implements the NetRexx \= (Not equal) operator, and returns a result (0
or 1) of type boolean.

OpNotEqS(set=RexxSet,
rhs=Rexx)

Implements the NetRexx \== (Strictly not equal) operator, and returns a
result (0 or 1) of type boolean.

OpOr(set=RexxSet,
rhs=Rexx)

Implements the NetRexx | (Inclusive or) operator, and returns a result (0
or 1) of type boolean.

OpPlus(set=RexxSet) Implements the NetRexx Prefix + (Plus) operator , and returns the result
as a string of type Rexx.

OpPow(set=RexxSet,
rhs=Rexx)

Implements the NetRexx ** (Power) operator , and returns the result as a
string of type Rexx.

OpRem(set=RexxSet,
rhs=Rexx)

Implements the NetRexx // (Remainder) operator , and returns the result
as a string of type Rexx.

OpSub(set=RexxSet,
rhs=Rexx)

Implements the NetRexx - (Subtract) operator, and returns the result as a
string of type Rexx.

Version 3.01 Appendix C – The netrexx.lang Package 185

OpXor(set=RexxSet,
rhs=Rexx)

Implements the NetRexx && (Exclusive or) operator, and returns a
result (0 or 1) of type boolean.

Rexx miscellaneous methods
These methods provide standard Java methods for the class, together with various conversions.

charAt(offset=int) Returns the character from the string at offset (that is, if offset is 0 then the first
character is returned, etc.). The character is returned as type char.

If offset is negative, or is greater than or equal to the length of the string, an
exception is signalled.

equals(item=Object) Compares the string with the value of item, using a strict character-by-
character comparison, and returns a result of type boolean.

If item is null or is not an instance of one of the types Rexx,
java.lang.String, or char[], then 0 is returned. Otherwise, item is
converted to type Rexx and the OpEqS (see page 185) method (or equivalent)
is used to compare the current string with the converted string, and its result is
returned.

hashCode() Returns a hashcode of type int for the string. This hashcode is suitable for use
by the java.util.Hashtable class.

toboolean() Converts the string to type boolean. If the string is neither “0” nor “1” then
a NotLogicException (see page 182) is signalled.

tobyte() Converts the string to type byte. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for a byte (8-bit signed integer)
result then a NumberFormatException is signalled.

tochar() Converts the string to type char. If the string is not exactly one character in
length then a NotCharacterException (see page 182) is signalled.

toCharArray() Converts the string to type char[]. A character array object of the same
length as the string is created, and the characters of the string are copied to the
array in sequence. The character array is then returned.

todouble() Converts the string to type double. If the string is not a number, or is out of
the possible range for a double (64-bit signed floating point) result then a
NumberFormatException is signalled.

tofloat() Converts the string to type float. If the string is not a number, or is out of
the possible range for a float (32-bit signed floating point) result then a
NumberFormatException is signalled.

toint() Converts the string to type int. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for an int (32-bit signed integer)
result then a NumberFormatException is signalled.

tolong() Converts the string to type long. If the string is not a number, has a non-zero
decimal part, or is out of the possible range for a long (64-bit signed integer)
result then a NumberFormatException is signalled.

toshort() Converts the string to type short. If the string is not a number, has a non-

186 Appendix C – The netrexx.lang Package Version 3.01

zero decimal part, or is out of the possible range for a short (16-bit signed)
result then a NumberFormatException is signalled.

toString() Converts the string to type java.lang.String. A String object of the same
length as the string is created, and the characters of the string are copied to the
new string in sequence. The String is then returned.

The RexxOperators interface class
The RexxOperators interface class defines the signatures of the methods that implement the
NetRexx (and Rexx) operators. These methods are described in the section Rexx arithmetic methods
(see page 184).

In the future this interface may be used to allow the overloading of operators for objects of types other
than Rexx. The current NetRexx language definition does not permit operator overloading.

Version 3.01 Appendix C – The netrexx.lang Package 187

The RexxSet class
The RexxSet class is used to provide the numeric settings for the methods described in the section
Rexx arithmetic methods (see page 184). When provided, a RexxSet Object supplies the numeric
settings for the operation; when null is provided then the default settings are used (digits=9,
form=SCIENTIFIC).

Public properties
These properties supply the numeric settings and certain values they may take. After construction, the
digits and form values should only be changed by using the setDigits and setForm methods.

DEFAULT_DIGITS A constant of type int that describes the default number of digits for a numeric
operation (9).

DEFAULT_FORM A constant of type byte that describes the default exponential format for a
numeric operation (SCIENTIFIC).

digits A value of type int that describes the numeric digits to be used for a numeric
operation. The Rexx arithmetic methods (see page 184) use this value to
determine the significance of results. digits must always be greater than zero.

ENGINEERING A constant of type byte that signifies that engineering exponential formatting
should be used for a numeric operation.

form A value of type byte that describes the exponential format to be used for a
numeric operation. The Rexx arithmetic methods (see page 184) use this value
to determine the formatting of results that require an exponent. form must be
either ENGINEERING or SCIENTIFIC.

SCIENTIFIC A constant of type byte that signifies that scientific exponential formatting
should be used for a numeric operation.

Constructors
These constructors are used to set the initial values of a RexxSet object.

RexxSet() Constructs a RexxSet object which has default digits and form
properties.

RexxSet(newdigits=int) Constructs a RexxSet object which has its digits property set to
newdigits and its form property set to DEFAULT_DIGITS.

RexxSet(newdigits=int,
newform=byte)

Constructs a RexxSet object which has its digits property set to
newdigits and its form property set to newform.

RexxSet(arg=RexxSet) Constructs a RexxSet object which is copy of arg, which is of type
netrexx.lang.RexxSet. arg must not be null.

188 Appendix C – The netrexx.lang Package Version 3.01

Methods
The RexxSet class has the following additional methods:

formword() Returns a string of type netrexx.lang.Rexx that describes the
form property. This will either be the string 'engineering' or
the string 'scientific', corresponding to the form value
ENGINEERING or SCIENTIFIC, respectively.

setDigits(newdigits=Rexx) Sets the digits value for the RexxSet object, from newdigits, after
rounding and checking as defined for the numeric instruction;
newdigits must be a positive whole number with no more than
nine digits. No value is returned.

setForm(newformword=Rexx) Sets the form value for the RexxSet object, from newformword.
This must equal either the string 'engineering' or the string
'scientific', corresponding to the form value ENGINEERING
or SCIENTIFIC, respectively. No value is returned.

Version 3.01 Appendix C – The netrexx.lang Package 189

Index

A
ABBREV method 158
Abbreviations

testing with ABBREV method 158
ABS method 158
Absolute

column specification in parsing 139
positional pattern 140
value, finding using ABS method 158

ABSTRACT
on CLASS instruction 82
on METHOD instruction 102

Abstract classes 82
Abstract methods 82, 102
Abuttal concatenation operator 65, 68
Acknowledgements 19
Active constructs 93
Active constructs

 92
Adaptability 17
ADAPTER

on CLASS instruction 82
Adapter classes 82
Addition 66

definition 145
Algebraic precedence 69
ALL

TRACE setting 123
Alphabetics

checking with DATATYPE 161
Alphanumerics

checking with DATATYPE 161
AND

logical operator 68
ANSI standard

arithmetic definition 143
for REXX 13

Arbitrary precision arithmetic 142
Arguments

of methods 57
on METHOD instruction 101

optional 102
passing to methods 57
provided by caller 101
required 102

Arithmetic 142
comparisons 148
errors 150
exceptions 150
implementation independence 150
NUMERIC settings 107
operation rules 145
operators 66, 142, 144
overflow 150
overview 26
precision 143
underflow 150

Array initializer
in terms 52, 78

Arrays 77
constructors 77
in terms 56
initializing 78
overview 30
references 77

ASCII
coded character set 43

ASK special word 133
Assignment 71, 72

binary 152
instruction 71, 72
of literals 152
property initialization 127

Astonishment factor 17

B
B2X method 158
Background 11
Backslash character

escape sequence 45
in strings 45
not operator 68

BadArgumentException 182

Version 3.01 Index 191

BadColumnException 182
BadNumericException 182
BASIC, programming language 15
Binary

arithmetic 151
checking with DATATYPE 161
conversion to hexadecimal 158
operations 151
see Conversion 161
values 151

BINARY
in OPTIONS instruction 109
on CLASS instruction 83
on METHOD instruction 104

Binary classes 83, 151
assignment 152
binary methods 104
control variables 152
LOOP instruction 152
NUMERIC instruction 152

Binary constructors 152
Binary literals 152
Binary methods 104, 151

assignment 152
control variables 152
LOOP instruction 152
NUMERIC instruction 152

Binary numbers 63, 151
Binary numbers

overview 37
Binary numeric symbol 46, 49
Binary operations

dyadic 151
monadic 152
prefix 152

Bits
binary operators 68
checking with DATATYPE 161

Blank 44
adjacent to operator character 47
adjacent to special character 47
as concatenation operator 65
as type conversion operator 68
operator 65, 68
removal with SPACE method 168
removal with STRIP method 168

Block comments 44
Body

of a loop 94
of classes 81
of group 85
of methods 101
of select 119

Boolean operations 68

boolean type, value of 63
Bottom of program, reaching during execution 87
Bounded loop 95

controlled 95
over values 97
simple 95

Brackets
in array initializers 52, 78
in array references 77
in indexed references 52
in indexed strings 76
in terms 52

Built-in methods 157
Built-in methods

see Method, built-in 157
BY phrase of LOOP instruction 94

C
C, programming language 12
C2D method 160
C2X method 160
Carriage return character

escape sequence 45
Case

insensitivity to 14
of names 48

CASE
on SELECT instruction 120

Casting
to type 68

Casts
see Conversion 62

CATCH
on DO instruction 86
on LOOP instruction 99
on SELECT instruction 121
use of 154

Caught exceptions 154
CENTER method 159
CENTRE method 159
CHANGESTR method 159
Changing strings

using CHANGESTR 159
using TRANSLATE 169

char
as a string 63

Character 43
appearance 43
conversion to decimal 160
conversion to hexadecimal 160
converting to binary 152
encodings 43, 152
from a number 162, 171
from decimal 162

192 Index Version 3.01

from hexadecimal 171
glyphs 43
removal with STRIP method 168

Character sets 43
Characters

see Strings 45
charAt method 186
Checked exceptions 155
Class 50

body of 81
definition 127
filename of 134
instances of 60
name of 81
names, case of 48
package of 113
qualified name of 113
short name of 81
starting 81

CLASS
special word 133

CLASS instruction 81
see program structure 81

Classes
abstract 82
adapter 82
and subclasses 83
and superclasses 83
binary 83
dependent 51, 131
final 82
interface 82
minor 51, 130
overview 33
parent 51, 130
private 81
public 81
shared 81
standard 82

Clauses 44
continuation of 48
null 71

Coded character 43
conversion to decimal 160
conversion to hexadecimal 160
from decimal 162
from hexadecimal 171

Coded character set
ASCII 43
EBCDIC 43
Unicode 43

Collating sequence, using SEQUENCE 167
Column specification in parsing 139
Comma

in array references 77
in indexed strings 76
in method calls 57

Command line options 112
Comments 44

block 44
line 44
nesting 44
starting a program with 45

COMMENTS option 109
COMPACT option 109
Comparative operators 66
COMPARE method 159
Comparison

of numbers 66, 148
of strings

using COMPARE 159
of strings and numbers 66

Compiler options 109
Compound terms 52
Concatenation

of strings 65
of types 68

Conditional loops 94
Conditional phrase 95, 98
Consistency 17
CONSOLE option 109
Console, writing to with SAY 118
CONSTANT

on METHOD instruction 102
on PROPERTIES instruction 116

Constant methods 103
see Methods, static 103

Constants 116
Constants

used by classes 83
using properties 116

Constructor
Rexx(boolean) 183
Rexx(byte) 183
Rexx(char) 183
Rexx(char[]) 183
Rexx(double) 183
Rexx(float) 183
Rexx(int) 183
Rexx(long) 183
Rexx(Rexx) 183
Rexx(short) 183
Rexx(String) 184
Rexx(String[]) 184
RexxSet() 188
RexxSet(int,byte) 188
RexxSet(int) 188

Version 3.01 Index 193

RexxSet(RexxSet) 188
Constructor methods

see Constructors 60
Constructors 60, 101

array 77
binary 152
default 60
in minor classes 130
method 101
of dependent objects 131
of minor classes 130
qualified 131
special 135

Constructs
active 93

Continuation
character 48
of clauses 48

Control instructions, overview 25
Control variable 95, 97
Controlled loops 95
Conversion

automatic 62
binary constructors 152
binary to hexadecimal 158
character to decimal 160
character to hexadecimal 160
coded character to decimal 160
coded character to hexadecimal 160
cost of 64
decimal to character 162
decimal to hexadecimal 162
explicit 63
formatting numbers 163
hexadecimal to binary 171
hexadecimal to character 171
hexadecimal to decimal 172
of characters 152
of types 62
of well-known types 62
overview 37

COPIES method 159
COPYINDEXED method 160
Copying a string using COPIES 159
Copying indexed variables 160
Counting

see Arithmetic 107
strings, using COUNTSTR 160
words, using WORDS 171

COUNTSTR method 160
CROSSREF option 110

D
D2C method 162

D2X method 162
Data

conversions 62
length of 65, 165
terms 52, 65
type checking 14, 65
types 50

DATATYPE method 161
Datatypes 14, 50, 62, 65
Dealing with reality 17
Debugging NetRexx programs

see TRACE instruction 123
Decimal

arithmetic 14, 142
conversion to character 162
conversion to hexadecimal 162

DECIMAL option 110
Declarations

of variables 73
why optional in NetRexx 16

DEFAULT_DIGITS property 188
DEFAULT_FORM property 188
Deleting

part of a string 162
words from a string 162

Delimiters
for comments 44
for strings 45

Delimiters, clause
see Semicolons 44

DELSTR method 162
DELWORD method 162
DEPENDENT

on CLASS instruction 131
Dependent classes 51, 131

restrictions 132
see Minor classes 131

Dependent object 131
constructing 131

DEPRECATED
on CLASS instruction 83
on METHOD instruction 104
on PROPERTIES instruction 116

DIAG option 110
Diagrams, of syntax 42
Digits

checking with DATATYPE 161
in numbers 143

DIGITS
effect on whole numbers 149
on NUMERIC instruction 107, 143
rounding when numbers used 149
special word 133

digits property 188

194 Index Version 3.01

Dimension
of arrays 51
of types 51

Dimensioned types 51
Displaying data

see SAY instruction 118
DivideException 182
Division 66

definition 145
integer 142

DO group 85
naming of 85

DO instruction 85
LABEL 85
see grouping 85

Dollar sign
in symbols 46

Double-quote
escape sequence 45
string delimiter 45

Dummy instruction, NOP 106
Duplicate methods 105
Dyadic operators 65

E
E-notation 69, 149
E-notation

definition 148
in symbols 46

EBCDIC
coded character set 43

ELSE keyword
see IF instruction 88

Empty reference, null 134
Encodings

binary 152
of characters 43

Encodings, of characters 43
END clause

see DO instruction 85
see LOOP instruction 94
see SELECT instruction 119
specifying control variable 96

End condition of a LOOP loop 95
End-of-file character 44
Engineering notation 107, 149
ENGINEERING property 188
ENGINEERING value for NUMERIC FORM 107
Environment, independence from 16
EOF character 44
Equality

of objects 67
testing of 66

equals method 186

Equals sign
see = equals sign 72

Error detection, localized 16
Errors during arithmetic 150
Escape sequences in strings 45
Euro character 46

in symbols 46
Evaluation

of expressions 65
of terms 53

Even/odd rounding 144
Example

applet 38
arrays 30
Hello World 127
indexed strings 29
of constructors 61
of exception handling 155
of two classes 128
program 22, 23, 29, 31, 33, 35-37, 39, 80, 174
trace 35, 36

Exception
BadArgumentException 182
BadColumnException 182
BadNumericException 182
DivideException 182
ExponentOverflowException 182
NoOtherwiseException 182
NotCharacterException 182
NotLogicException 182
NullPointerException 182
NumberFormatException 182

Exceptions 154
after CATCH clause 155
after FINALLY clause 155
checked 155
during arithmetic 150
during conversions 63
listed on METHOD instruction 104
overview 25, 39
raising 122
signalling 122
throwing 122

Exclusive OR
logical operator 68

EXISTS method 163
EXIT instruction 87
Experimental feature 177
EXPLICIT option 110
Exponential notation 69, 107, 142, 149
Exponential notation

definition 148
in symbols 46

Exponentiation 66

Version 3.01 Index 195

definition 146
ExponentOverflowException 182
Expressions

evaluation 65
examples 70
overview 23
results of 65

Extending classes
overview 33

EXTENDS
on CLASS instruction 83

Extra digits
in numbers 143
in numeric symbols 46, 47
in symbols 46

Extra letters, in symbols 46
Extracting

a sub-string 168
words from a string 168

F
False value 68
FINAL

on CLASS instruction 82
on METHOD instruction 102

Final classes 82
Final methods 103
FINALLY

on DO instruction 86
on LOOP instruction 99
on SELECT instruction 121
reached by LEAVE 93
use of 154

Finding a mismatch using COMPARE 159
Finding a string in another string 165, 167
Fixed size, of arrays 77
Floating-point numbers, binary 151
Flow control

abnormal, with SIGNAL 122
with DO construct 85
with IF construct 88
with LOOP construct 94
with SELECT construct 119

FOR
phrase of LOOP instruction 94
repetitor on LOOP instruction 94

FOREVER
loops 95
repetitor on LOOP instruction 94

FORM
option of NUMERIC instruction 107, 149
special word 133

Form feed character 44
form property 188

FORMAT
method 163
option 110

Formatting
numbers for display 163
numbers with TRUNC 169
of output during tracing 125
text centering 159
text left justification 165
text right justification 167
text spacing 168

formword() method 189
Full name

of classes 130
Fully-qualified name, of classes 113
Functions

numeric arguments of 149
return from 117
see Methods, static 103
used by classes 83

G
Glyphs 43
Group, DO 85
Guard digit in arithmetic 144

H
hashCode method 186
Hexadecimal

checking with DATATYPE 161
conversion to binary 171
conversion to character 171
conversion to decimal 172
digits in escapes 46
escape sequence 45
see Conversion 161

Hexadecimal numeric symbol 46, 49
Hyphen

as continuation character 48

I
IF instruction 88
IMPLEMENTS

on CLASS instruction 83
Implied semicolons 48
IMPORT instruction 90
Imports

automatic 91
explicit 90

Inclusive OR operator
see OR logical operator 68

Indefinite loops 94, 95
Indention during tracing 125
Index strings

196 Index Version 3.01

for sub-values 76
testing for 163

Indexed references
arrays 77
in terms 52
indexed strings 76

Indexed strings 76
copying 160
example 29
merging 160
overview 29
testing for 163

INDIRECT
on PROPERTIES instruction 178

Indirect properties 178
Inequality, testing of 66
Infinite loops 94
Influence

of C 12
of Java 12
of Rexx 11

INHERITABLE
on METHOD instruction 102
on PROPERTIES instruction 115

Initializing arrays 78
Inner classes

see Minor classes 130
INSERT method 165
Inserting a string into another 165
Instance, of a class 60
Instructions 80

assignment 71, 72
CLASS 81
DO 85
EXIT 87
IF 88
IMPORT 90
ITERATE 92
keyword 71, 80
LEAVE 93
LOOP 94
METHOD 101, 104
method call 71
NOP 106
NUMERIC 107
OPTIONS 109
PACKAGE 113
PARSE 114
PROPERTIES 115, 178
RETURN 117
SAY 118
SELECT 119
SIGNAL 122
TRACE 123

Integer arithmetic 142
Integer division 66, 142

definition 147
Integers, binary 151
INTERFACE

on CLASS instruction 82
Interface classes 82

properties in 116
Interfaces

implemented by classes 83
Internal functions

return from 117
Interpreter options 109
Introduction 11
ITERATE instruction 92

see LOOP construct 92
use of variable on 92

J
Java

features of 12
in reference implementation 41
influence of 12
programming language 12

JAVA option 110
JavaBean properties 177

K
Keyword instructions 71, 80
Keyword safety 11
Keywords 71

mixed case 80

L
LABEL

on DO instruction 85
on LOOP instruction 98
on SELECT instruction 120

Language concepts 14
Language processor options 109
LASTPOS method 165
Leading blanks

removal with STRIP method 168
Leading zeros

adding with the RIGHT method 167
removal with STRIP method 168

LEAVE instruction 93
see DO construct 93
use of variable on 93

LEFT method 165
Legibility, perceived 14
Length

of arrays 56
of comments 44

Version 3.01 Index 197

LENGTH
method 165
special word 56, 133

Letters
checking with DATATYPE 161

Limits of size 18
Line comments 44
Line ends, effect of 48
Line feed character

escape sequence 45
Line numbers, in tracing 125
Line, displaying 118
Literal patterns 138
Literal strings 45

in terms 52
see Strings 45

Literals, binary 152
Local variables 73
Locating

a string in another string 165, 167
a word or phrase in a string 171

Logical operations 68
LOGO option 110
LOOP instruction 94

see loops 94
Loops

active 92, 93
execution model 99
in binary classes and methods 152
label 98
modification of 92
naming of 98
repetitive 94, 95
see LOOP instruction 94
termination of 93

LOWER method 165
Lowercase

checking with DATATYPE 161
names 48

Lowercasing strings 165

M
Mantissa of exponential numbers 148
Matching methods 58
Mathematical method

ABS 158
DATATYPE options 161
FORMAT 163
MAX 166
MIN 166
SIGN 167

MAX method 166
Member classes

see Dependent classes 131

Merging indexed variables 160
Method 50

argument variables 73
body of 101
calls in terms 52
charAt 186
definition 127
equals 186
formword() 189
hashCode 186
names, case of 48
NotEq 185
NotEqS 185
OpAdd 184
OpAnd 184
OpCc 184
OpCcblank 184
OpDiv 184
OpDivI 184
OpEq 185
OpEqS 185
OpGt 185
OpGtEq 185
OpGtEqS 185
OpGtS 185
OpLt 185
OpLtEq 185
OpLtEqS 185
OpLtS 185
OpMinus 185
OpMult 185
OpNot 185
OpOr 185
OpPlus 185
OpPow 185
OpRem 185
OpSub 185
OpXor 186
setDigits(Rexx) 189
setForm(Rexx) 189
short name of 101
starting 101
toboolean 186
tobyte 186
tochar 186
todouble 186
tofloat 186
toint 186
tolong 186
toshort 186
toString 187

Method call instructions 57, 71
METHOD instruction 101, 104
METHOD instruction

198 Index Version 3.01

see program structure 101
Method, built-in

ABBREV 158
ABS 158
B2X 158
C2D 160
C2X 160
CENTER 159
CENTRE 159
CHANGESTR 159
COMPARE 159
COPIES 159
COPYINDEXED 160
COUNTSTR 160
D2C 162
D2X 162
DATATYPE 161
DELSTR 162
DELWORD 162
EXISTS 163
FORMAT 163
INSERT 165
LASTPOS 165
LEFT 165
LENGTH 165
LOWER 165
MAX 166
MIN 166
OVERLAY 167
POS 167
REVERSE 167
RIGHT 167
SEQUENCE 167
SIGN 167
SPACE 168
STRIP 168
SUBSTR 168
SUBWORD 168
TRANSLATE 169
TRUNC 169
UPPER 170
VERIFY 170
WORD 170
WORDINDEX 170
WORDLENGTH 171
WORDPOS 171
WORDS 171
X2B 171
X2C 171
X2D 172

Methods 57
abstract 82, 102
arguments of 101
binary 104

built-in 157
constant 103
constructor 60, 101
duplicate 105
final 103
inheritable 102
invocation of 57
native 103
NetRexx 157
overloading 105
overriding 59
private 102
protected 103
public 102
resolution of 58
return values 104
searching for 58
shared 102
special 135
standard 102
static 103

METHODS
TRACE setting 123

MIN method 166
Minor classes 51, 130

constructing 130
naming of 130
nesting of 130
restrictions 132
see Dependent classes 130

Mixed case
checking with DATATYPE 161
names 48

Model
of loop execution 99

Modulo
see Remainder operator 147

Monadic (prefix) operators 65
Moving characters, with TRANSLATE method 169
Multiplication 66

definition 145

N
Names

case of 48
of variables 72
on ITERATE instructions 92
on LEAVE instructions 93
special

ask 133
digits 133
form 133
length 133

Version 3.01 Index 199

null 134
source 134
super 134
this 134
trace 135
version 135

Names, special
class 133
sourceline 134

NATIVE
on METHOD instruction 102

Native methods 103
Natural data typing 14
Negation

of logical values 68
of numbers 66

Nested classes
see Minor classes 130

Nesting of comments 44
NetRexx

background 11
introduction 11
language concepts 14
language definition 41
objectives 11
overview 21

netrexx.lang
Exceptions 182
Rexx arithmetic methods 184
Rexx class 183
Rexx constructors 183
Rexx miscellaneous methods 186
RexxOperators class 187
RexxSet class 188
RexxSet constructors 188
RexxSet methods 189
RexxSet properties 188

netrexx.lang package 181
Newline character

escape sequence 45
NOBINARY option 109
NOCOMMENTS option 109
NOCOMPACT option 109
NOCONSOLE option 109
NOCROSSREF option 110
NODECIMAL option 110
NODIAG option 110
NOEXPLICIT option 110
NOFORMAT option 110
NOJAVA option 110
NOLOGO option 110
NoOtherwiseException 182
NOP instruction 106

NOREPLACE option 110
Normal comparative operators 66
NOSAVELOG option 110
NOSOURCEDIR option 110
NOSTRICTARGS option 110
NOSTRICTASSIGN option 110
NOSTRICTCASE option 110
NOSTRICTIMPORT option 111
NOSTRICTPROPS option 111
NOSTRICTSIGNAL option 111
NOSYMBOLS option 111
NOT operator 68
Notation

engineering 107, 149
scientific 107, 149

Notations
in text 42
syntax 42

NotCharacterException 182
NotEq method 185
NotEqS method 185
Nothing to declare 16
NotLogicException 182
NOTRACE option 111
NOUTF8 option 111
NOVERBOSE option 111
Null character

escape sequence 45
Null clauses 71
Null instruction, NOP 106
NULL special word 134
Null strings 45
NullPointerException 182
NumberFormatException 182
Numbers 69, 142

arithmetic on 66, 142, 144
as symbols 46
checking with DATATYPE 161
comparison of 66, 148
conversion to character 162, 171
conversion to hexadecimal 162
definition 143, 148
examples of 69
formatting for display 163
in LOOP instruction 94
rounding 163
see Conversion 161
truncating 169
use of by NetRexx 149

Numeric
part of a number 143, 148

NUMERIC
DIGITS 143
FORM 149

200 Index Version 3.01

in binary classes and methods 152
instruction 107

Numeric symbols 46, 52
Numeric symbols

binary 49
hexadecimal 49

O
Object Rexx, programming language 12
Object-oriented programming concepts 14
Objectives of the NetRexx language 11
Objects

comparing 67
constructing 60
equality 67
overview 31

OFF
TRACE setting 123

OpAdd method 184
OpAnd method 184
OpCc method 184
OpCcblank method 184
OpDiv method 184
OpDivI method 184
OpEq method 185
OpEqS method 185
Operators 65

arithmetic 66, 142, 144
blank 65, 68
characters used for 47
comparative 66, 148
composition of 65
concatenation 65
logical 68
precedence (priorities) of 69
type 68

OpGt method 185
OpGtEq method 185
OpGtEqS method 185
OpGtS method 185
OpLt method 185
OpLtEq method 185
OpLtEqS method 185
OpLtS method 185
OpMinus method 185
OpMult method 185
OpNot method 185
OpOr method 185
OpPlus method 185
OpPow method 185
OpRem method 185
OpSub method 185
Option words 109
Optional arguments 102

Options
on command line 112

OPTIONS
instruction 109

OpXor method 186
OR

logical exclusive 68
logical inclusive 68

OTHERWISE clause
see SELECT instruction 119

Over loops 97
OVER repetitor on LOOP instruction 94
Overflow, arithmetic 150
OVERLAY method 167
Overlaying a string onto another 167
Overloaded methods 105
Overriding methods 59
Overview

Arithmetic 26
Arrays 30
binary types 37
control instructions 25
conversions 37
exceptions 39
expressions 23
extending classes 33
indexed strings 29
NetRexx 21
objects 31
parsing 28
programs 22
strings 27
tracing 35
variables 23

P
Package 50, 113

name of 90, 113
netrexx.lang 181

PACKAGE instruction 113
Packing a string

with B2X 158
with X2C 171

Parent
of dependent object 131

PARENT
special word 132

Parent class 130
Parent object 131
Parentheses

adjacent to blanks 47
in expressions 65, 69
in method calls 52, 57
in parsing templates 141

Version 3.01 Index 201

in terms 52
omitting from method calls 52, 53

PARSE
instruction 114
parsing rules 136

Parsing 136
absolute columns 140
definition 137
general rules 136, 137
introduction 136
literal patterns 138
overview 28
patterns 138
positional patterns 139
selecting words 138
variable patterns 141

Parsing templates 136
Parsing templates

in PARSE instruction 114
Patterns

in parsing 138
Perceived legibility 14
Period

as placeholder in parsing 139
in numbers 143
in terms 52

Philosophy of NetRexx 11, 14
POS position method 167
Positional patterns 139
Power operator 66

definition 146
Powers of ten in numbers 69, 148
Precedence of operators 69
Precision

arbitrary 14, 142
of arithmetic 143

Prefix operators 65
arithmetic 145
- 66

with types 68
\ 68

with types 68
+ 66

with types 68
Primitive types 50, 151
Primitive types

conversions 62
Priorities of operators 69
PRIVATE

on CLASS instruction 81
on METHOD instruction 102
on PROPERTIES instruction 115

Program

filename of 134
prolog 127
structure 127

Programmer's model of LOOP 99
Programming style 14
Programs 127

examples 29, 31, 33, 174
overview 22
structure 127

Prolog, of a program 127
Properties 50, 73, 115

case of names 48
constant 116
deprecated 116
for JavaBeans 177
in dependent classes 132
in interface classes 116
in minor classes 132
indirect 178
inheritable 115
initialization 127
modifiers 116
naming 115
private 115
public 115
shared 115
static 116
transient 116
unused 116
visibility 115
volatile 116

PROPERTIES instruction 115, 178
Property

DEFAULT_DIGITS 188
DEFAULT_FORM 188
digits 188
ENGINEERING 188
form 188
SCIENTIFIC 188

PROTECT
on DO instruction 85
on LOOP instruction 99
on METHOD instruction 103
on SELECT instruction 120

Protected methods 103
PUBLIC

on CLASS instruction 81
on METHOD instruction 102
on PROPERTIES instruction 115

Punctuation, optional 14
Pure numbers 148
Pure numbers

see Numbers 142

202 Index Version 3.01

Q
qtime example program 174
Qualified name, of classes 113
Qualified types 50
Quotes in strings 45

R
Raising exceptions 122
Raising exceptions

see SIGNAL 122
Re-ordering characters

with TRANSLATE method 169
Readability, of programs 14
Real numbers, binary 151
Reality, dealing with 17
Reference implementation 41
References

in terms 52
null 134
to arrays 77
to current object 134
to indexed strings 76
to methods 57

Relative column specification in parsing 140
Relative positional pattern 140
Reliability, of a language 17
Remainder operator 66, 142

definition 147
Repeating a string with COPIES 159
Repetitive loops 95
Repetitor phrase 95
REPLACE option 110
Replacing strings

using CHANGESTR 159
using TRANSLATE 169

Required arguments 102
Residue

see Remainder operator 147
Resolution of methods 58
Results

of methods 104
returned by RETURN 117
size of 65

RESULTS
TRACE setting 124

Return character
escape sequence 45

Return code, setting on exit 87
RETURN instruction 117
Return string, setting on exit 87
RETURNS

on METHOD instruction 104
REVERSE method 167

Rexx
arithmetic 142
class

conversions 62
methods of 157
NetRexx strings 50
use by PARSE 114

features of 11
influence of 11

Rexx(boolean) constructor 183
Rexx(byte) constructor 183
Rexx(char) constructor 183
Rexx(char[]) constructor 183
Rexx(double) constructor 183
Rexx(float) constructor 183
Rexx(int) constructor 183
Rexx(long) constructor 183
Rexx(Rexx) constructor 183
Rexx(short) constructor 183
Rexx(String) constructor 184
Rexx(String[]) constructor 184
RexxSet() constructor 188
RexxSet(int,byte) constructor 188
RexxSet(int) constructor 188
RexxSet(RexxSet) constructor 188
RIGHT method 167
Robustness 17
Rounding 142

definition 144
when numbers used 149

Routines
see Methods 57

Running off the end of a program 87

S
Sample programs

see Examples 174
SAVELOG option 110
SAY

instruction 118
Scientific notation 107, 149
SCIENTIFIC property 188
SCIENTIFIC value for NUMERIC FORM 107
Search order

for methods 58
for term evaluation 54

Searching a string for a word or phrase 167, 171
Select

label 120
naming of 120

SELECT instruction 119
Semicolons 44

can be omitted 42

Version 3.01 Index 203

implied 48
SEQUENCE method 167
setDigits(Rexx) method 189
setForm(Rexx) method 189
SHARED

on CLASS instruction 81
on METHOD instruction 102
on PROPERTIES instruction 115

Short name
of classes 81, 130
of methods 101

SIGN method 167
SIGNAL instruction 122
Signals 154
SIGNALS

on METHOD instruction 104
Signature

see Type 50
Significand of exponential numbers 148
Significant digits, in arithmetic 143
Signs in parsing templates 139
Simple DO group 85
Simple number 46

see Numbers 142
Simple repetitor phrase 95
Simple terms 52
Single-quote

escape sequence 45
string delimiter 45

Size
of language 18
see Length 18

SOURCE special word 134
SOURCEDIR option 110
SOURCELINE

special word 134
SPACE method 168
Special characters 47
Special characters

used for operators 47
Special methods 135

super 131, 135
this 135

Special words 133
ask 133
class 133
digits 133
form 133
length 133
null 134
parent 132
source 134
sourceline 134
super 134

this 132, 134
trace 135
version 135

Square brackets
in array initializers 52, 78
in indexed references 52

Standard classes 82
Standard methods 102
STATIC

on METHOD instruction 102
on PROPERTIES instruction 116

Static methods 103
Static methods

used by classes 83
Static variable typing 73
stderr, used by TRACE 126
stdin, reading with ASK 133
stdout, writing to with SAY 118
Strict comparative operators 66
STRICTARGS option 110
STRICTASSIGN option 110
STRICTCASE option 110
STRICTIMPORT option 111
STRICTPROPS option 111
STRICTSIGNAL option 111
Strings 45

as literal constants 45
comparison of 66
concatenation of 65
escapes in 45
in terms 52
indexed 76
length of 165
lowercasing 165
moving with TRANSLATE method 169
null 45
overview 27
quotes in 45
sub-values of 76
types of 63
uppercasing 170
verifying contents of 170

STRIP method 168
Strong typing 14
Structured programming concepts 14
Stub, of term 52
Style, programming 14
Sub-expressions, in terms 52
Sub-keywords 80
Sub-string, extracting 168
Sub-values, of strings 76
Subclass of a class 83
Subroutines

calling 57

204 Index Version 3.01

passing back values from 117
return from 117

Substitution
in expressions 65

SUBSTR method 168
Subtraction 66

definition 145
SUBWORD method 168
SUPER

special method 131, 135
special word 134

Superclass of a class 83
Symbol characters

checking with DATATYPE 161
Symbolic manipulation 15
Symbols 46

assigning values to 72
case of 48
in terms 52
numeric 46, 52
use of 72
valid names 46

SYMBOLS option 111
Syntactic units 16
Syntax checking

see TRACE instruction 123
Syntax diagrams

notation for 42
Syntax notation 42
System independence 16
System-dependent options 109

T
Tab character 44

escape sequence 45
Tabulation character 44
Templates, parsing 136

general rules 136
in PARSE instruction 114

Ten, powers of 148
Terminal, writing to with SAY 118
Terms 52, 65

compound 52
evaluation of 53
in assignments 74
on left of = 74
parsing of 114
simple 52
stub of 52

Testing for indexed variables 163
Text formatting

see Formatting 157
see Words 157

THEN

following IF clause 88
following WHEN clause 119

THIS
special method 135
special word 132, 134

Thread
tracing 126

TO phrase of LOOP instruction 94
toboolean method 186
tobyte method 186
tochar method 186
todouble method 186
tofloat method 186
toint method 186
Tokens 45
tolong method 186
Tools, reliability of 17
toshort method 186
toString method 187
Trace

context 126
TRACE

instruction 123
option 111
special word 135

Trace setting 123
Trace setting

altering with TRACE instruction 123
Tracing

clauses 123
data identifiers 125
execution of programs 123
line numbers 125
overview 35
variables 124

Trailing blanks
removal with STRIP method 168

Trailing zeros 145
TRANSIENT

on PROPERTIES instruction 116
TRANSLATE method 169
Translation

see Case translation 169
with TRANSLATE method 169

Trapping of exceptions 122
Trapping of exceptions

see SIGNAL 122
True value 68
TRUNC method 169
Truncating numbers 169
Types 50

checking instances of 68
checking with DATATYPE 161
concatenation of 68

Version 3.01 Index 205

conversions 62
declaring 73
dimensioned 51
of terms 65
of values 65
operations on 68
primitive 50, 151
qualified 50
simplification 62

Typing (printing) data
see SAY instruction 118

U
Underflow, arithmetic 150
Underscore

in symbols 46
Unicode

coded character set 43
escape sequence 45
UTF-8 encoding 111

Unpacking a string
with C2X 160
with X2B 171

UNTIL phrase of LOOP instruction 94
UNUSED

on PROPERTIES instruction 116
UPPER method 170
Uppercase

checking with DATATYPE 161
names 48

Uppercasing strings 170
USES

on CLASS instruction 83
UTF-8 encoding 111
UTF8 option 111
Utility methods 157

V
Variable reference

in parsing template 141
Variables 72

controlling loops 95
in parsing patterns 141
indexed 76
local 73
method arguments 73
names of 72
overview 23
parsing of 114
properties 73
scope of 73
setting new value 72
static typing of 73
subscripts 76

type of 72
valid names 72
visibility 73

VERBOSE option 111
VERBOSEn option 111
VERIFY method 170
VERSION special word 135
Visibility

of classes 81
of methods 102
of properties 115

VOLATILE
on PROPERTIES instruction 116

W
Well-known conversions 62
WHEN clause

see SELECT instruction 119
WHILE phrase of LOOP instruction 94
White space 44
Whole numbers 69

checking with DATATYPE 161
definition 149

WORD method 170
Word processing

see Formatting 157
see Words 157

WORDINDEX method 170
WORDLENGTH method 171
WORDPOS method 171
Words

counting, using WORDS 171
deleting from a string 162
extracting from a string 168, 170
finding in a string 171
finding length of 171
in parsing 138
locating in a string 170
special

ask 133
digits 133
form 133
length 133
null 134
source 134
super 134
this 134
trace 135
version 135

WORDS method 171
Words, special

class 133
sourceline 134

206 Index Version 3.01

X
X2B method 171
X2C method 171
X2D method 172
XOR, logical operator 68

Z
Zero character

escape sequence 45
Zeros

adding on the left 167
padding 167
removal with STRIP method 168

_
_ underscore

in symbols 46

-
- continuation character 48
- minus sign

in parsing template 140
subtraction operator 66, 145

-- line comment delimiter 44

.

. (period)
as placeholder in parsing 139
in numbers 143
in terms 52

*
* multiplication operator 66, 145
- tracing flag 125
** power operator 66, 146
*/ block comment delimiter 44
= tracing flag 125

/
/ division operator 66, 145
/* block comment delimiter 44
// remainder operator 66, 147

\
\ backslash

escape character 45
not operator 68

\\ invalid sequence 47
\< not less than operator 67
\<< strictly not less than operator 67
\= not equal operator 67
\== strictly not equal operator 67

\> not greater than operator 67
\>> strictly not greater than operator 67

&
& and operator 68
&& exclusive or operator 68

%
% integer division operator 66, 147

+
+ plus sign

addition operator 66, 145
in parsing template 140

++ invalid sequence 47
+++ tracing flag 125

<
< less than operator 67
<< strictly less than operator 67
<<= strictly less than or equal operator 67
<= less than or equal operator 67

on types 68
<> less than or greater than operator 67

=
= equals sign

assignment indicator 72
equal operator 67
in LOOP instruction 94
in parsing template 140

== strictly equal operator 67

>
> greater than operator 67
>< greater than or less than operator 67
>= greater than or equal operator 67

on types 68
>> strictly greater than operator 67
>>= strictly greater than or equal operator 67
>>> tracing flag 125
>a> tracing flag 125
>p> tracing flag 125
>v> tracing flag 125

|
| or operator 68
|| concatenation operator 65, 68

$
$ dollar sign

in symbols 46

Version 3.01 Index 207

	License Information
	
	Introduction
	Language objectives
	Features of Rexx
	Influence of Java
	A hybrid or a whole?

	Language concepts
	Readability
	Natural data typing and decimal arithmetic
	Emphasis on symbolic manipulation
	Nothing to declare
	Environment independence
	Limited span syntactic units
	Dealing with reality
	Be adaptable
	Keep the language small
	No defined size or shape limits

	Acknowledgements

	NetRexx Overview
	NetRexx programs
	Expressions and variables
	Control instructions
	NetRexx arithmetic
	Doing things with strings
	Parsing strings
	Parsing into words
	Literal patterns
	Positional patterns

	Indexed strings
	Arrays
	Things that aren’t strings
	Programs are classes, too

	Extending classes
	Optional arguments

	Tracing
	Binary types and conversions
	Explicit type assignment
	Binary types in practice

	Exception and error handling

	NetRexx Language Definition
	Notations
	Characters and Encodings
	Character Sets

	Structure and General Syntax
	Blanks and White Space
	Comments
	Tokens
	Implied semicolons and continuations
	The case of names and symbols
	Hexadecimal and binary numeric symbols

	Types and Classes
	Primitive types
	Dimensioned types
	Minor and Dependent classes

	Terms
	Simple terms
	Compound terms
	Evaluation of terms
	Simple term evaluation
	Stub evaluation
	Continuation evaluation
	Arrays in terms

	Methods and Constructors
	Method call instructions
	Method resolution (search order)
	Method overriding
	Constructor methods

	Type conversions
	Permitted automatic conversions
	Permitted explicit conversions
	Costs of conversions

	Expressions and Operators
	Operators
	Numbers
	Parentheses and operator precedence

	Clauses and Instructions
	Assignments and Variables
	The use and scope of variables
	Terms on the left of assignments

	Indexed strings and Arrays
	Arrays
	Array initializers

	Keyword Instructions
	Class instruction
	Visibility
	Modifier
	Binary
	Deprecated
	Extends
	Uses
	Implements

	Do instruction
	Label phrase
	Protect phrase
	Exceptions in do groups

	Exit instruction
	If instruction
	Import instruction
	Iterate instruction
	Leave instruction
	Loop instruction
	Syntax notes:
	Indefinite loops
	Bounded loops
	Label phrase
	Protect phrase
	Exceptions in loops
	Programmer’s model – how a typical loop is executed

	Method instruction
	Arguments
	Visibility
	Modifier
	Protect
	Binary
	Deprecated
	Returns
	Signals
	Duplicate methods

	Nop instruction
	Numeric instruction
	Options instruction
	Package instruction
	Parse instruction
	Properties instruction
	Visibility
	Modifier
	Deprecated
	Unused
	Properties in interface classes

	Return instruction
	Say instruction
	Select instruction
	Label phrase
	Protect phrase
	Case phrase
	Exceptions in select constructs

	Signal instruction
	Trace instruction
	Tracing clauses
	Tracing variables
	The format of trace output

	Program structure
	Program defaults

	Minor and Dependent classes
	Minor classes
	Constructing objects in minor classes

	Dependent classes
	Constructing dependent objects
	Access to parent objects and their properties

	Restrictions

	Special names and methods
	Special names
	Special methods

	Parsing templates
	Introduction to parsing
	Parsing definition
	Parsing with literal patterns
	Parsing strings into words
	Use of the period as a placeholder
	Parsing with positional patterns
	Parsing with variable patterns

	Numbers and Arithmetic
	Introduction
	Definition
	Numbers
	Precision
	Arithmetic operators
	Arithmetic operation rules – basic operators
	Arithmetic operation rules – additional operators
	Numeric comparisons
	Exponential notation
	Whole numbers
	Numbers used directly by NetRexx
	Implementation independence
	Exceptions and errors

	Binary values and operations
	Operations in binary classes and methods
	Binary constructors

	Exceptions
	Syntax and example
	Exceptions after catch and finally clauses
	Checked exceptions

	Methods for NetRexx strings
	General notes on the built-in methods:
	The built-in methods

	Appendix A – A Sample NetRexx Program
	Appendix B – JavaBean Support
	Indirect properties
	Explicit provision of access methods

	Appendix C – The netrexx.lang Package
	Exception classes
	The Rexx class
	Rexx constructors
	Rexx arithmetic methods
	Rexx miscellaneous methods

	The RexxOperators interface class
	The RexxSet class
	Public properties
	Constructors
	Methods

	Index

