
NetRexx Quick Start
Mike Cowlishaw and RexxLA

Version 3.01 of August 5, 2012

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-2-0

Publication Data
c⃝Copyright The Rexx Language Association, 2012
All original material in this publication is published under the Creative Commons - Share Alike 3.0
License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk
14, 1074HRAmsterdam, a registered company governed by the laws of the Kingdom of TheNetherlands.

This edition is registered under ISBN 978-90-819090-2-0

9 789081 909020

ISBN 978-90-819090-2-0

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

The NetRexx Programming Series i

Typographical conventions iii

Introduction v

Requirements vii

1 A Quick Tour of NetRexx 1
1.1 NetRexx programs 1
1.2 Expressions and variables 2
1.3 Control instructions 3
1.4 NetRexx arithmetic 4
1.5 Doing things with strings 5
1.6 Parsing strings 5
1.7 Indexed strings 6
1.8 Arrays 8
1.9 Things that aren’t strings 8
1.10 Extending classes 10
1.11 Tracing 11
1.12 Binary types and conversions 13
1.13 Exception and error handling 15
1.14 Summary and Information Sources 15

2 Installation 17
2.1 Unpacking the NetRexx package 17
2.2 Installing the NetRexx Translator 18
2.3 Installing just the NetRexx Runtime 19
2.4 Setting the CLASSPATH 19
2.5 Testing the NetRexx Installation 20

3 Installing on an IBMMainframe 23

4 Running on a JRE-only environment 25
4.1 Eclipse Batch Compiler 25
4.2 The nrx.compiler property 25
4.3 Interpreting 26

III

5 Using the translator 27
5.1 Using the translator as a Compiler 27
5.2 The translator command 27
5.3 Compiling multiple programs and using packages 29
5.4 Programmatic use of the NetRexxC translator 30

6 Using the prompt option 31
6.1 Using the translator as an Interpreter 32
6.2 Interpreting – Hints and Tips 33
6.3 Interpreting – Performance 33

7 Troubleshooting 35

8 Current Restrictions 37
8.1 General restrictions 37
8.2 Compiler restrictions 37
8.3 Interpreter restrictions 38

List of Figures 41

List of Tables 41

Index 47

IV

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the Net-
Rexx programming language and its use and applications. This section lists the other
publications in this series, and their roles. These books can be ordered in convenient
hardcopy and electronic formats from the Rexx Language Association.

Quick Start Guide This guide is meant for an audience that has done some pro-
gramming and wants to start quickly. It starts with a quick
tour of the language, and a section on installing the Net-
Rexx translator and how to run it. It also contains help for
troubleshooting if anything in the installation does not work
as designed., and states current limits and restrictions of the
open source reference implementation.

Programming Guide The Programming Guide is the one manual that at the same
time teaches programming, shows lots of examples as they
occur in the real world, and explains about the internals of
the translator and how to interface with it.

Language Reference Referred to as the NRL, this is the formal definition for the
language, documenting its syntax and semantics, and pre-
scribing minimal functionality for language implementors.
It is the definitive answer to any question on the language,
and as such, is subject to approval of the NetRexx Architec-
ture Review Board on any release of the language (including
its NRL).

NJPipes Reference The Data Flow oriented companion to NetRexx, with its
CMS Pipes compatible syntax, is documented in this man-
ual. It discusses installing and running Pipes for NetRexx,
and has ample examples of defining your own stages in Net-
Rexx.

i

Typographical conventions

In general, the following conventions have been observed in theNetRexx publications:. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the console,
are in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing

1 −− salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

properties
�� �
�

�visibility

�

�
�modifier

�

�
�deprecated

�� �

�

�
�unused

�� �

�

iii

Introduction

This document is the Quick Start Guide for the reference implementation of NetRexx.
NetRexx is a human-oriented programming language which makes writing and using
Java1 classes quicker and easier than writing in Java. It is part of the Rexx language
family, under the governance of the Rexx Language Association.2 NetRexx has been
developed by IBM since 1995 and is Open Source since June, 2011.
In this Quick Start Guide, you’ll find information on
1. How easy it is to write for the JVM: A Quick Tour of NetRexx
2. Installing NetRexx
3. Using the NetRexx translator as a compiler, interpreter, or syntax checker
4. Troubleshooting when things do not work as expected
5. Current restrictions.

The NetRexx documentation and software are distributed by The Rexx Language Asso-
ciation under the ICU license. For the terms of this license, see the included LICENSE
file in this package.
For details of the NetRexx language, and the latest news, downloads, etc., please see

the NetRexx documentation included with the package or available at: http://www.
netrexx.org.

1Java is a trademark of Oracle, Inc.
2http.www.rexxla.org

v

http://www.netrexx.org
http://www.netrexx.org
http.www.rexxla.org

Requirements

Since release 3.01 (August 2012), NetRexx requires only a JRE3, where previously a
Java SDK4 (earlier name: JDK) was required. For serious development purposes a Java
SDK is recommended, as the tools found therein might assist the development process.
NetRexx runs on a wide variety of hardware and operating systems; all releases are
tested on (non-exhaustive):
1. Windows Desktop and Server editions, with Oracle and IBM JVMs
2. Linux, with Oracle and IBM JVMs, including z/Linux
3. MacOSX with OpenJDK and Apple JVM
4. Android on ARM hardware with Dalvik virtual machine
5. z/OS OMVS
6. eComstation 2.x (OS/2) with eComstation Java 1.6

NetRexx runs equally well on 32- or 64-bit JVMs. As the translator is a command line
tool, no graphics configuration is required, and headless operation is supported. Care is
taken to keep the NetRexx runtime small, and to keep compatibility with earlier(post-
beta) Java releases, older operating systems and limited devices environments. The
class file format, however, of current release distributions is post-Java 1.4; for older
formats, you can build NetRexx yourself or request assistance from the development
team (developers@netrexx.kenai.com)5 for a special build.

3Java Runtime Environment
4Software Development Kit
5You will need to be member of the Kenai NetRexx project

vii

1

A Quick Tour of NetRexx

This chapter summarizes the main features of NetRexx, and is intended to help you
start using it quickly. It is assumed that you have some knowledge of programming in a
language such as Rexx, C, BASIC, or Java, but extensive experience with programming
is not needed.
This is not a complete tutorial, though – think of it more as a taster; it covers the main

points of the language and shows some examples you can try or modify. For full details
of the language, consult the NetRexx Programmer’s Guide and the NetRexx Language
Definition documents.

1.1 NetRexx programs

The structure of a NetRexx program is extremely simple. This sample program, “toast”,
is complete, documented, and executable as it stands:

Listing 1.1: Toast
1 /∗ This wishes you the best of health. ∗/
2 say 'Cheers!'

This program consists of two lines: the first is an optional comment that describes the
purpose of the program, and the second is a say instruction. say simply displays the
result of the expression following it – in this case just a literal string (you can use either
single or double quotes around strings, as you prefer). To run this program using the
reference implementation of NetRexx, create a file called toast.nrx and copy or paste
the two lines above into it. You can then use the NetRexxC Java program to compile it:

java org.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to run it:
java toast

You may also be able to use the netrexxc or nrc command to compile and run the pro-
gram with a single command (details may vary – see the installation and user’s guide
document for your implementation of NetRexx):

netrexxc toast –run

Of course, NetRexx can do more than just display a character string. Although the lan-
guage has a simple syntax, and has a small number of instruction types, it is powerful;
the reference implementation of the language allows full access to the rapidly grow-
ing collection of Java programs known as class libraries, and allows new class libraries

1

to be written in NetRexx. The rest of this overview introduces most of the features of
NetRexx. Since the economy, power, and clarity of expression in NetRexx is best ap-
preciated with use, you are urged to try using the language yourself.

1.2 Expressions and variables

Like say in the “toast” example, many instructions in NetRexx include expressions that
will be evaluated. NetRexx provides arithmetic operators (including integer division,
remainder, and power operators), several concatenation operators, comparison opera-
tors, and logical operators. These can be used in any combination within a NetRexx
expression (provided, of course, that the data values are valid for those operations).
All the operators act upon strings of characters (known as NetRexx strings), which

may be of any length (typically limited only by the amount of storage available). Quotes
(either single or double) are used to indicate literal strings, and are optional if the literal
string is just a number. For example, the expressions:

’2’ + ’3’
’2’ + 3
2 + 3

would all result in ’5’.
The results of expressions are often assigned to variables, using a conventional as-

signment syntax:

Listing 1.2: Assignment
1 var1=5 /∗ sets var1 to '5' ∗/
2 var2=(var1+2)∗10 /∗ sets var2 to '70' ∗/

You can write the names of variables (and keywords) in whatever mixture of upper-
case and lowercase that you prefer; the language is not case-sensitive. This next sample
program, “greet”, shows expressions used in various ways:

Listing 1.3: Greet
1 /∗ greet.nrx –– a short program to greet you. ∗/
2 /∗ First display a prompt: ∗/
3 say 'Please type your name and then press Enter:'
4 answer=ask /∗ Get the reply into 'answer' ∗/
5 /∗ If no name was entered, then use a fixed ∗/
6 /∗ greeting, otherwise echo the name politely. ∗/
7 if answer='' then say 'Hello Stranger!'
8 else say 'Hello' answer'!'

After displaying a prompt, the program reads a line of text from the user (“ask” is a
keyword provided by NetRexx) and assigns it to the variable answer. This is then tested
to see if any characters were entered, and different actions are taken accordingly; for
example, if the user typed “Fred” in response to the prompt, then the program would
display:
Hello Fred!

As you see, the expression on the last say (display) instruction concatenated the string
“Hello” to the value of variable answer with a blank in between them (the blank is here
a valid operator, meaning “concatenate with blank”). The string “!” is then directly con-
catenated to the result built up so far. These unobtrusive operators (the blank operator

2

and abuttal) for concatenation are very natural and easy to use, and make building text
strings simple and clear.
The layout of instructions is very flexible. In the “greet” example, for instance, the

if instruction could be laid out in a number of ways, according to personal preference.
Line breaks can be added at either side of the then (or following the else).
In general, instructions are ended by the end of a line. To continue a instruction to a

following line, you can use a hyphen (minus sign) just as in English:

Listing 1.4: Continuation
1 say 'Here we have an expression that is quite long,' –
2 'so it is split over two lines'

This acts as though the two lines were all on one line, with the hyphen and any blanks
around it being replaced by a single blank. The net result is two strings concatenated
together (with a blank in between) and then displayed. When desired, multiple instruc-
tions can be placed on one line with the aid of the semicolon separator:

Listing 1.5: Multiple Instructions
1 if answer='Yes' then do; say 'OK!'; exit; end

(many people find multiple instructions on one line hard to read, but sometimes it is
convenient).

1.3 Control instructions

NetRexx provides a selection of control instructions, whose form was chosen for read-
ability and similarity to natural languages. The control instructions include if... then...
else (as in the “greet” example) for simple conditional processing:

Listing 1.6: Conditional
1 if ask='Yes' then say "You answered Yes"
2 else say "You didn't answer Yes"

select... when... otherwise... end for selecting from a number of alternatives:

Listing 1.7: select - when - otherwise
1 select
2 when a>0 then say 'greater than zero'
3 when a<0 then say 'less than zero'
4 otherwise say 'zero'
5 end
6 select case i+1
7 when 1 then say 'one'
8 when 1+1 then say 'two'
9 when 3, 4, 5 then say 'many'
10 end

do... end for grouping:

Listing 1.8: do - end
1 if a>3 then do
2 say 'A is greater than 3; it will be set to zero'
3 a=0
4 end

and loop... end for repetition:
3

Listing 1.9: loop - end
1 /∗ repeat 10 times; I changes from 1 to 10 ∗/
2 loop i=1 to 10
3 say i end i

The loop instruction can be used to step a variable to some limit, by some increment,
for a specified number of iterations, and while or until some condition is satisfied.
loop forever is also provided, and loop over can be used to work through a collection
of variables.
Loop execution may be modified by leave and iterate instructions that significantly

reduce the complexity of many programs. The select, do, and loop constructs also have
the ability to “catch” exceptions (see 1.13 on page 15.) that occur in the body of the
construct. All three, too, can specify a finally instruction which introduces instructions
which are to be executed when control leaves the construct, regardless of how the con-
struct is ended.

1.4 NetRexx arithmetic

Character strings in NetRexx are commonly used for arithmetic (assuming, of course,
that they represent numbers). The string representation of numbers can include integers,
decimal notation, and exponential notation; they are all treated the same way. Here are
a few:

’1234’
’12.03’
’–12’
’120e+7’

The arithmetic operations in NetRexx are designed for people rather than machines,
so are decimal rather than binary, do not overflow at certain values, and follow the
rules that people use for arithmetic. The operations are completely defined by the ANSI
X3.274 standard for Rexx, so correct implementations always give the same results. An
unusual feature of NetRexx arithmetic is the numeric instruction: this may be used to
select the arbitrary precision of calculations. You may calculate to whatever precision
that you wish (for financial calculations, perhaps), limited only by available memory.
For example:

Listing 1.10: Digits
1 numeric digits 50
2 say 1/7

which would display
0.14285714285714285714285714285714285714285714285714

The numeric precision can be set for an entire program, or be adjusted at will within
the program. The numeric instruction can also be used to select the notation (scientific
or engineering) used for numbers in exponential format. NetRexx also provides simple
access to the native binary arithmetic of computers. Using binary arithmetic offers many
opportunities for errors, but is useful when performance is paramount. You select binary
arithmetic by adding the instruction:

options binary

4

at the top of a NetRexx program. The language processor will then use binary arith-
metic (see page 13) instead of NetRexx decimal arithmetic for calculations, if it can,
throughout the program.

1.5 Doing things with strings

A character string is the fundamental datatype of NetRexx, and so, as you might expect,
NetRexx provides many useful routines for manipulating strings. These are based on
the functions of Rexx, but use a syntax that is more like Java or other similar languages:

Listing 1.11: Strings
1 phrase='Now is the time for a party'
2 say phrase.word(7).pos('r')

The second line here can be read from left to right as:
take the variable phrase, find the seventh word, and then find the position of the first “r” in that
word.

This would display “3” in this case, because “r” is the third character in “party”.
(In Rexx, the second line above would have been written using nested function calls:

Listing 1.12: Rexx: Nested
1 say pos('r', word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack from
right to left to work out exactly what’s going on.)
In the NetRexx syntax, at each point in the sequence of operations some routine is

acting on the result of what has gone before. These routines are calledmethods, to make
the distinction from functions (which act in isolation). NetRexx provides (as methods)
most of the functions that were evolved for Rexx, including:. changestr (change all occurrences of a substring to another). copies (make multiple copies of a string). lastpos (find rightmost occurrence). left and right (return leftmost/rightmost character(s)). pos and wordpos (find the position of string or a word in a string). reverse (swap end-to-end). space (pad between words with fixed spacing). strip (remove leading and/or trailing white space). verify (check the contents of a string for selected characters). word, wordindex, wordlength, and words (work with words).
These and the others like them, and the parsing described in the next section, make it
especially easy to process text with NetRexx.

1.6 Parsing strings

The previous section described some of the string-handling facilities available; NetRexx
also provides string parsing, which is an easy way of breaking up strings of characters
using simple pattern matching.

5

A parse instruction first specifies the string to be parsed. This can be any term, but is
often taken simply from a variable. The term is followed by a template which describes
how the string is to be split up, and where the pieces are to be put.

1.6.1 Parsing into words

The simplest form of parsing template consists of a list of variable names. The string
being parsed is split up into words (sequences of characters separated by blanks), and
each word from the string is assigned (copied) to the next variable in turn, from left to
right. The final variable is treated specially in that it will be assigned a copy of whatever
is left of the original string and may therefore contain several words. For example, in:

Listing 1.13: Parsing Strings
1 parse 'This is a sentence.' v1 v2 v3

the variable v1 would be assigned the value “This”, v2 would be assigned the value “is”,
and v3 would be assigned the value “a sentence.”.

1.6.2 Literal patterns

A literal string may be used in a template as a pattern to split up the string. For example

Listing 1.14: Parse
1 parse 'To be, or not to be?' w1 ',' w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point; each
section is then treated in just the same way as the whole string was in the previous
example.
Thus, w1 would be set to “To be”, w2 and w3 would be assigned the values “or” and

“not”, and w4 would be assigned the remainder: “to be?”. Note that the pattern itself is
not assigned to any variable. The pattern may be specified as a variable, by putting the
variable name in parentheses. The following instructions:

Listing 1.15: Parse with comma
1 comma=','
2 parse 'To be, or not to be?' w1 (comma) w2 w3 w4

therefore have the same effect as the previous example.

1.6.3 Positional patterns

The third kind of parsing mechanism is the numeric positional pattern. This allows
strings to be parsed using column positions.

1.7 Indexed strings

NetRexx provides indexed strings, adapted from the compound variables of Rexx. In-
dexed strings form a powerful “associative lookup”, or dictionary, mechanism which
can be used with a convenient and simple syntax.

6

NetRexx string variables can be referred to simply by name, or also by their name
qualified by another string (the index). When an index is used, a value associated with
that index is either set:
Listing 1.16: Index

1 fred=0 –– initial value
2 fred[3]='abc' –– indexed value

or retrieved:
Listing 1.17: Retrieving

1 say fred[3] –– would say "abc"

in the latter case, the simple (initial) value of the variable is returned if the index has not
been used to set a value. For example, the program:

Listing 1.18: Woof
1 bark='woof'
2 bark['pup']='yap'
3 bark['bulldog']='grrrrr'
4 say bark['pup'] bark['terrier'] bark['bulldog']

would display
yap woof grrrrr

Note that it is not necessary to use a number as the index; any expression may be used
inside the brackets; the resulting string is used as the index. Multiple dimensions may
be used, if required:

Listing 1.19: Multiple Dimensions
1 bark='woof'
2 bark['spaniel', 'brown']='ruff'
3 bark['bulldog']='grrrrr'
4 animal='dog'
5 say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

which would display
ruff woof grrrrr

Here’s a more complex example using indexed strings, a test program with a function
(called a static method in NetRexx) that removes all duplicate words from a string of
words:
Listing 1.20: justonetest.nrx

1 /∗ justonetest.nrx –– test the justone function. ∗/
2 say justone('to be or not to be') /∗ simple testcase ∗/
3 exit
4 /∗ This removes duplicate words from a string, and ∗/
5 /∗ shows the use of a variable (HADWORD) which is ∗/
6 /∗ indexed by arbitrary data (words). ∗/
7 method justone(wordlist) static
8 hadword=0 /∗ show all possible words as new ∗/
9 outlist='' /∗ initialize the output list ∗/
10 loop while wordlist\='' /∗ loop while we have data ∗/
11 /∗ split WORDLIST into first word and residue ∗/
12 parse wordlist word wordlist
13 if hadword[word] then iterate /∗ loop if had word ∗/
14 hadword[word]=1 /∗ remember we have had this word ∗/
15 outlist=outlist word /∗ add word to output list ∗/
16 end
17 return outlist /∗ finally return the result ∗/

Running this program would display just the four words “to”, “be”, “or”, and “not”.

7

1.8 Arrays

NetRexx also supports fixed-size arrays. These are an ordered set of items, indexed by
integers. To use an array, you first have to construct it; an individual item may then be
selected by an index whose value must be in the range 0 through n–1, where n is the
number of items in the array:

Listing 1.21: Arrays
1 array=String[3] –– make an array of three Strings
2 array[0]='String one' –– set each array item
3 array[1]='Another string'
4 array[2]='foobar'
5 loop i=0 to 2 –– display the items
6 say array[i]
7 end

This example also shows NetRexx line comments; the sequence “––” (outside of literal
strings or “/*” comments) indicates that the remainder of the line is not part of the
program and is commentary.
NetRexx makes it easy to initialize arrays: a term which is a list of one or more ex-

pressions, enclosed in brackets, defines an array. Each expression initializes an element
of the array. For example:

Listing 1.22: Initializing elements
1 words=['Ogof', 'Ffynnon', 'Ddu']

would set words to refer to an array of three elements, each referring to a string. So, for
example, the instruction:

Listing 1.23: Address Array Element
1 say words[1]

would then display
Ffynnon

1.9 Things that aren’t strings

In all the examples so far, the data being manipulated (numbers, words, and so on)
were expressed as a string of characters. Many things, however, can be expressed more
easily in some other way, so NetRexx allows variables to refer to other collections of
data, which are known as objects.
Objects are defined by a name that lets NetRexx determine the data and methods that

are associated with the object. This name identifies the type of the object, and is usually
called the class of the object.
For example, an object of class Oblong might represent an oblong to be manipulated

and displayed. The oblong could be defined by two values: its width and its height.
These values are called the properties of the Oblong class.
Mostmethods associatedwith an object perform operations on the object; for example

a size method might be provided to change the size of an Oblong object. Other methods
are used to construct objects (just as for arrays, an object must be constructed before it

8

can be used). In NetRexx and Java, these constructor methods always have the same
name as the class of object that they build (“Oblong”, in this case).
Here’s how an Oblong class might be written in NetRexx (by convention, this would

be written in a file called Oblong.nrx; implementations often expect the name of the
file to match the name of the class inside it):

Listing 1.24: Oblong
1 /∗ Oblong.nrx –– simple oblong class ∗/
2 class Oblong
3 width –– size (X dimension)
4 height –– size (Y dimension)
5 /∗ Constructor method to make a new oblong ∗/
6 method Oblong(newwidth, newheight)––
7 when we get here, a new (uninitialized) object––
8 has been created. Copy the parameters we have––
9 been given to the properties of the object:
10 width=newwidth; height=newheight
11 /∗ Change the size of an Oblong ∗/
12 method size(newwidth, newheight) returns Oblong
13 width=newwidth; height=newheight
14 return this –– return the resized object
15 /∗ Change the size of an Oblong, relatively ∗/
16 method relsize(relwidth, relheight)–
17 returns Oblong
18 width=width+relwidth; height=height+relheight
19 return this
20 /∗ 'Print' what we know about the oblong ∗/
21 method print
22 say 'Oblong' width 'x' height

To summarize:

1. A class is started by the class instruction, which names the class.
2. The class instruction is followed by a list of the properties of the object. These can

be assigned initial values, if required.

3. The properties are followed by the methods of the object. Each method is intro-
duced by a method instruction which names the method and describes the argu-
ments that must be supplied to the method. The body of the method is ended by
the next method instruction (or by the end of the file).

The Oblong.nrx file is compiled just like any other NetRexx program, and should cre-
ate a class file called Oblong.class. Here’s a program to try out the Oblong class:

Listing 1.25: Try Oblong
1 /∗ tryOblong.nrx –– try the Oblong class ∗/
2 first=Oblong(5,3) –– make an oblong
3 first.print –– show it
4 first.relsize(1,1).print –– enlarge and print again
5 second=Oblong(1,2) –– make another oblong
6 second.print –– and print it

When tryOblong.nrx is compiled, you’ll notice (if your compiler makes a cross-
reference listing available) that the variables first and second have type Oblong.
These variables refer to Oblongs, just as the variables in earlier examples referred to
NetRexx strings.
Once a variable has been assigned a type, it can only refer to objects of that type. This

helps avoid errors where a variable refers to an object that it wasn’t meant to.

9

1.9.1 Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are in fact
classes (you may have noticed that compiling them with the reference implementation
creates xxx.class files, where xxx is the name of the source file). The environment
underlying the implementation will allow a class to run as a stand-alone application if
it has a static method called main which takes an array of strings as its argument.
If necessary (that is, if there is no class instruction) NetRexx automatically adds the

necessary class and method instructions for a stand-alone application, and also an in-
struction to convert the array of strings (each of which holds one word from the com-
mand string) to a single NetRexx string.
The automatic additions can also be included explicitly; the “toast” example could

therefore have been written:

Listing 1.26: New Toast
1 /∗ This wishes you the best of health. ∗/
2 class toast
3 method main(argwords=String[]) static
4 arg=Rexx(argwords)
5 say 'Cheers!'

though in this program the argument string, arg, is not used.

1.10 Extending classes

It’s common, when dealing with objects, to take an existing class and extend it. One
way to do this is to modify the source code of the original class – but this isn’t always
available, and with many different people modifying a class, classes could rapidly get
overcomplicated.
Languages that deal with objects, likeNetRexx, therefore allow new classes of objects

to be set up which are derived from existing classes. For example, if you wanted a
different kind of Oblong in which the Oblong had a new property that would be used
when printing the Oblong as a rectangle, you might define it thus:

Listing 1.27: charOblong.nrx
1 /∗ charOblong.nrx –– an oblong class with character ∗/
2 class charOblong extends Oblong
3 printchar –– the character for display
4 /∗ Constructor to make a new oblong with character ∗/
5 method charOblong(newwidth, newheight, newprintchar)
6 super(newwidth, newheight) –– make an oblong
7 printchar=newprintchar –– and set the character
8 /∗ 'Print' the oblong ∗/
9 method print
10 loop for super.height
11 say printchar.copies(super.width)
12 end

There are several things worth noting about this example:
1. The “extends Oblong” on the class instruction means that this class is an ex-

tension of the Oblong class. The properties and methods of the Oblong class are
inherited by this class (that is, appear as though they were part of this class). An-
other common way of saying this is that “charOblong” is a subclass of “Oblong”
(and “Oblong” is the superclass of “charOblong”).

10

2. This class adds the printchar property to the properties already defined for Ob-
long.

3. The constructor for this class takes a width and height (just like Oblong) and adds
a third argument to specify a print character. It first invokes the constructor of its
superclass (Oblong) to build an Oblong, and finally sets the printchar for the new
object.

4. The new charOblong object also prints differently, as a rectangle of characters,
according to its dimension. The print method (as it has the same name and argu-
ments – none – as that of the superclass) replaces (overrides) the print’ method
of Oblong.

5. The other methods of Oblong are not overridden, and therefore can be used on
charOblong objects.

The charOblong.nrx file is compiled just like Oblong.nrx was, and should create a
file called charOblong.class.
Here’s a program to try it out

Listing 1.28: tryCharOblong.nrx
1 /∗ trycharOblong.nrx –– try the charOblong class ∗/
2 first=charOblong(5,3,'#') –– make an oblong
3 first.print –– show it
4 first.relsize(1,1).print –– enlarge and print again
5 second=charOblong(1,2,'∗') –– make another oblong
6 second.print –– and print it

This should create the two charOblong objects, and print them out in a simple “char-
acter graphics” form. Note the use of the method relsize from Oblong to resize the
charOblong object.

1.10.1 Optional arguments

All methods in NetRexx may have optional arguments (omitted from the right) if de-
sired. For an argument to be optional, you must supply a default value. For example,
if the charOblong constructor was to have a default value for printchar, its method in-
struction could have been written

Listing 1.29: Default value X
1 method charOblong(newwidth, newheight, newprintchar='X')

which indicates that if no third argument is supplied then ’X’ should be used. A program
creating a charOblong could then simply write:

Listing 1.30: Default value
1 first=charOblong(5,3) –– make an oblong

which would have exactly the same effect as if ’X’were specified as the third argument.

1.11 Tracing

NetRexx tracing is defined as part of the language. The flow of execution of programs
may be traced, and this trace can be viewed as it occurs (or captured in a file). The trace

11

can show each clause as it is executed, and optionally show the results of expressions,
etc. For example, the trace results in the program “trace1.nrx”:

Listing 1.31: Trace
1 trace results
2 number=1/7
3 parse number before '.' after
4 say after'.'before

would result in:
––– trace1.nrx

2 *=* number=1/7
>v> number ”0.142857143”

3 *=* parse number before ’.’ after
>v> before ”0”
>v> after ”142857143”

4 *=* say after’.’before
>>> ”142857143.0”

142857143.0

where the line marked with “–––” indicates the context of the trace, lines marked with
“*=*” are the instructions in the program, lines with “>v>” show results assigned to
local variables, and lines with “»>” show results of unnamed expressions.
Further, trace methods lets you trace the use of all methods in a class, along with

the values of the arguments passed to each method. Here’s the result of adding trace
methods to the Oblong class shown earlier and then running tryOblong:

––– Oblong.nrx
8 *=* method Oblong(newwidth, newheight)

>a> newwidth ”5”
>a> newheight ”3”

26 *=* method print
Oblong 5 x 3
20 *=* method relsize(relwidth, relheight)–

21 *–*
>a> relwidth ”1”
>a> relheight ”1”

26 *=* method print
Oblong 6 x 4
returns Oblong

10 *=* method Oblong(newwidth, newheight)
>a> newwidth ”1”
>a> newheight ”2”

26 *=* method print
Oblong 1 x 2

where lines with “>a>” show the names and values of the arguments.
It is often useful to be able to find out when (and where) a variable’s value is changed.

The trace var instruction does just that; it adds names to or removes names from a list
of monitored variables. If the name of a variable in the current class or method is in the
list, then trace results is turned on for any assignment, loop, or parse instruction that

12

assigns a new value to the named variable.
Variable names to be added to the list are specified by listing them after the var

keyword. Any name may be optionally prefixed by a – sign., which indicates that the
variable is to be removed from the list.
For example, the program “trace2.nrx”:

Listing 1.32: trace2.nrx
1 trace var a b––
2 now variables a and b will be traced
3 a=3
4 b=4
5 c=5
6 trace var –b c––
7 now variables a and c will be traced
8 a=a+1
9 b=b+1
10 c=c+1
11 say a b c

would result in:
––– trace2.nrx

3 *=* a=3
>v> a ”3”

4 *=* b=4
>v> b ”4”

8 *=* a=a+1
>v> a ”4”

10 *=* c=c+1
>v> c ”6”

4 5 6

1.12 Binary types and conversions

Most programming environments support the notion of fixed-precision “primitive” bi-
nary types, which correspond closely to the binary operations usually available at the
hard- ware level in computers. For the reference implementation, these types are:. byte, short, int, and long – signed integers that will fit in 8, 16, 32, or 64 bits respec-
tively. float and double – signed floating point numbers that will fit in 32 or 64 bits respec-
tively.. char – an unsigned 16-bit quantity, holding a Unicode character. boolean – a 1-bit logical value, representing 0 or 1 (“false” or “true”).

Objects of these types are handled specially by the implementation “under the covers”
in order to achieve maximum efficiency; in particular, they cannot be constructed like
other objects – their value is held directly. This distinction rarely matters to the NetRexx
programmer: in the case of string literals an object is constructed automatically; in the
case of an int literal, an object is not constructed.
Further, NetRexx automatically allows the conversion between the various forms of

character strings in implementations6 and the primitive types. The “golden rule” that is
6In the reference implementation, these are String, char, char[] (an array of characters), and the NetRexx string type, Rexx.

13

followed by NetRexx is that any automatic conversion which is applied must not lose
information: either it can be determined before execution that the conversion is safe (as
in int to String) or it will be detected at execution time if the conversion fails (as in
String to int).
The automatic conversions greatly simplify the writing of programs; the exact type

of numeric and string-like method arguments rarely needs to be a concern of the pro-
grammer. For certain applications where early checking or performance override other
considerations, the reference implementation of NetRexx provides options for different
treatment of the primitive types:
1. options strictassign – ensures exact typematching for all assignments. No conver-

sions (including those from shorter integers to longer ones) are applied. This option
provides stricter type-checking than most other languages, and ensures that all
types are an exact match.

2. options binary – uses implementation-dependent fixed precision arithmetic on
binary types (also, literal numbers, for example, will be treated as binary, and local
variables will be given “native” types such as int or String, where possible).

Binary arithmetic currently gives better performance than NetRexx decimal arithmetic,
but places the burden of avoiding overflows and loss of information on the programmer.
The options instruction (whichmay list more than one option) is placed before the first

class instruction in a file; the binary keyword may also be used on a class or method
instruction, to allow an individual class or method to use binary arithmetic.

1.12.1 Explicit type assignment

You may explicitly assign a type to an expression or variable:

Listing 1.33: Assigning Type
1 i=int 3000000 –– 'i' is an 'int' with value 3000000
2 j=int 4000000 –– 'j' is an 'int' with value 4000000
3 k=int
4 say i∗j
5 k=i∗j––
6 'k' is an 'int', with no initial value––
7 multiply and display the result––
8 multiply and assign result to 'k'

This example also illustrates an important difference between options nobinary and
options binary. With the former (the default) the say instruction would display the
result “1.20000000E+13” and a conversion overflow would be reported when the same
expression is assigned to the variable k.
With options binary, binary arithmetic would be used for the multiplications, and

so no error would be detected; the say would display “–138625024” and the variable k
takes the incorrect result.

1.12.2 Binary types in practice

In practice, explicit type assignment is only occasionally needed in NetRexx. Those
conversions that are necessary for using existing classes (or those that use options bi-
nary) are generally automatic. For example, here is an Applet for use by Java-enabled
browsers:

14

Listing 1.34: A Simple Applet
1 /∗ A simple graphics Applet ∗/
2 class Rainbow extends Applet
3 method paint(g=Graphics) –– called to repaint window
4 maxx=size.–width1
5 maxy=size.–height1
6 loop y=0 to maxy
7 col=Color.getHSBColor(y/maxy, 1, 1) –– new colour
8 g.setColor(col) –– set it
9 g.drawLine(0, y, maxx, y) –– fill slice
10 end y

In this example, the variable col will have type Color, and the three arguments to the
method getHSBColorwill all automatically be converted to type float. As no overflows
are possible in this example, options binary may be added to the top of the program
with no other changes being necessary.

1.13 Exception and error handling

NetRexx does not have a goto instruction, but a signal instruction is provided for abnor-
mal transfer of control, such as when something unusual occurs. Using signal raises an
exception; all control instructions are then “unwound” until the exception is caught by a
control instruction that specifies a suitable catch instruction for handling the exception.
Exceptions are also raised when various errors occur, such as attempting to divide a

number by zero. For example:

Listing 1.35: Exception
1 say 'Please enter a number:'
2 number=ask
3 do
4 say 'The reciprocal of' number 'is:' 1/number
5 catch Exception
6 say 'Sorry, could not divide "'number'" into 1'
7 say 'Please try again.'
8 end

Here, the catch instruction will catch any exception that is raised when the division is
attempted (conversion error, divide by zero, etc.), and any instructions that follow it are
then executed. If no exception is raised, the catch instruction (and any instructions that
follow it) are ignored.
Any of the control instructions that endwith end (do, loop, or select) may bemodified

with one or more catch instructions to handle exceptions.

1.14 Summary and Information Sources

The NetRexx language, as you will have seen, allows the writing of programs for the
Java environment with aminimum of overhead and “boilerplate syntax”; using NetRexx
for writing Java classes could increase your productivity by 30% or more. Further, by
simplifying the variety of numeric and string types of Java down to a single class that
follows the rules of Rexx strings, programming is greatly simplified. Where necessary,
however, full access to all Java types and classes is available.
Other examples are available, including both stand-alone applications and samples of

applets for Java-enabled browsers (for example, an applet that plays an audio clip, and

15

another that displays the time in English). You can find these from the NetRexx web
pages, at http://www.netrexx.org. Also at that location, you’ll find the NetRexx lan-
guage specification and other information, and downloadable packages containing the
NetRexx software and documentation. There is a large selection of NetRexx examples
available at http://www.rosettacode.org. The software should run on any platform
that has a Java Virtual Machine (JVM) available.

16

http://www.netrexx.org
http://www.rosettacode.org

2

Installation

This chapter of the document tells you how to unpack, install, and test the NetRexx
translator package. This will install documentation, samples, and executables. It will
first state some generic steps that are sufficient for most users. The appendices contain
very specific instructions for a range of platforms that NetRexx is used on. Note that
to run any of the samples, or use the NetRexx translator, you must have already in-
stalled the Java runtime (and toolkit, if you want to compile NetRexx programs using
the default compiler). The NetRexx samples and translator, as of version 3.01, will run
on Java version 1.5 or later7. To do anything more than run NetRexx programs with the
runtime package, a Java software development kit is required. You can test whether Java
is installed, and its version, by trying the following command at a command prompt:

java –version

which should display a response similar to this:
java version ”1.6.0_26”
Java(TM) SE Runtime Environment (build 1.6.0_26-b03-383-11A511)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02-383, mixed mode)

For more information on Java installation:
1. For some operating environments
2. For other operating systems, see the Oracle Java web page8 – or other suppliers of

Java toolkits.

2.1 Unpacking the NetRexx package

The NetRexx package is shipped as a collection of files compressed into the file Net-
Rexx<version>.zip. Most modern operating environments can uncompress a .zip pack-
age by doubleclicking.

2.1.1 Unpacking the NetRexx.zip file

An unzip command is included in most Linux distributions, andMac OSX. You can also
use the jar command which comes with all Java development kits. Choose where you
want the NetRexx directory tree to reside, and unpack the zip file in the directory which
will be the parent of the NetRexx tree. Here are some tips: The syntax for unzipping
NetRexx.zip is simply

7For earlier versions of Java, NetRexx 2.05 is available from the NetRexx.org website.
8at http://www.javasoft.com

17

http://www.javasoft.com

unzip NetRexx

which should create the files and directory structure directly.. WinZip: all versions may be used. Linux unzip: use the syntax: unzip –a NetRexx. The “–a” flag will automatically
convert text files to Unix format if necessary. jar: The syntax for unzipping NetRexx.zip is
jar xf NetRexx.zip

which should create the files and directory structure directly. The “x” indicates that the
contents should be extracted, and the “f” indicates that the zip file name is specified.
Note that the extension (.zip) is required.
After unpacking, the following directories1 should have been created: -TODO-

2.2 Installing the NetRexx Translator

The NetRexx package includes the NetRexx translator – a Java application which can be
used for compiling, interpreting, or syntax-checking NetRexx programs. The procedure
for installation is briefly as follows9 (full details are given later):
1. Make the translator visible to the Java Virtual Machine (JVM) - either:.Add the full path and filename of the NetRexx/lib/NetRexxC.jar to the CLASS-

PATH environment variable for your operating system. Note: if you have a Net-
RexxC.zip in your CLASSPATH from an earlier version of NetRexx, remove it
(NetRexxC.jar replaces NetRexxC.zip)..Or (deprecated): Copy the file NetRexx/lib/NetRexxC.jar to the jre/lib/ext direc-
tory in the Java installation tree. The JVMwill automatically find it there andmake
it available10.

2. Copy all the files in theNetRexx/bin directory to a directory in your PATH (perhaps
the /bin directory in the Java installation tree). This is not essential, but makes
shorthand scripts and a test case available.

3. Make the file /lib/tools.jar (which contains the javac compiler) in the Java tree
visible to the JVM. You can do this either by adding its path and filename to the
CLASSPATH environment variable, or by moving it to the jre/lib/ext directory in
the Java tree. This file sometime goes under different names, that will bementioned
in the platform-specific appendices.

4. Test the installation by making the /bin directory the current directory and issuing
the following two commands exactly as written:

java org.netrexx.process.NetRexxC hello
java hello

The first of these should translate the test program and then invoke the javac com-
piler to generate the class file (hello.class) for the program. The second should run
the program and display a simple greeting.

9For Windows operating system, forward slashes are backslashes.
10 This has serious drawbacks, however: This breaks NetRexx applications running in custom class loader environments such

as jEdit and NetRexxScript, as well as some JSP containers. As soon as the Java version is updates, NetRexx applications may
mysteriously – due to the now obsolete path - fail. Running multiple versions of Java and NetRexx for testing purposes will become
very hard when this way of installing is chosen.

18

If you have any problems or errors in the above process, please read the detailed in-
structions and problem-solving tips that follow.

2.3 Installing just the NetRexx Runtime

If you only want to run NetRexx programs and do not wish to compile or interpret them,
or if you would like to use the NetRexx string (Rexx) classes from other languages, you
can install just the NetRexx runtime classes.
To do this, follow the appropriate instructions for installing the compiler, but use the
NetRexxR.jar instead of NetRexxC.jar. The NetRexxR.jar file can be found in the Ne-
tRexx/runlib directory.
You do not need to use or copy the executables in the NetRexx/bin directory.
The NetRexx class files can then be referred to from Java or NetRexx programs
by importing the package netrexx.lang. For example, a string might be of class net-
rexx.lang.Rexx.
For information on the netrexx.lang.Rexx class and other classes in the runtime, see the
NetRexx Language Reference document.
note If you have already installed the NetRexx translator (NetRexxC.jar) then you do

not need to install NetRexxR.jar; the latter contains only the NetRexx runtime classes,
and these are already included in NetRexxC.jar.

2.4 Setting the CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH to indi-
cate a search path for Java classes. The Java Virtual Machine and the NetRexx transla-
tor rely on the CLASSPATH value to find directories, zip files, and jar files which may
contain Java classes. The procedure for setting the CLASSPATH environment variable
depends on your operating system (and there may be more than one way). Please refer
to Appendix 1 for your specific platform.. For Linux and Unix (BASH, Korn, or Bourne shell), use:

CLASSPATH=<newdir>:\$CLASSPATH
export CLASSPATH. Changes for re-boot or opening of a newwindow should be placed in your /etc/profile,

.login, or .profile file, as appropriate.. For Linux and Unix (C shell), use:
setenv CLASSPATH <newdir>:\$CLASSPATH

Changes for re-boot or opening of a new window should be placed in your .cshrc file.
If you are unsure of how to do this, check the documentation you have for installing
the Java toolkit.. For Windows operating systems, it is best to set the system wide environment, which
is accessible using the Control Panel (a search for “environment” offsets the many
attempts to relocate the exact dialog in successive Windows Control Panel versions
somewhat).. In Windows Powershell, limitations set by the administrator can determine which
kind of scripting (using Powershell, not NetRexx) can be undertaken. It might be

19

difficult to modify the enviroment, and a different from scripting under the cmd.exe
processor is that the environment is local to an execution unit of a line. When chang-
ing the environment is allowed, and a Powershell script is used to start the NetRexx
translator, this is how it can be done:
$env:path = ”c:\program files\java\jdk1.7.0_02\bin;\Users\rvjansen\bin;”
$env:classpath = ”.;\Users\rvjansen\lib\NetRexxC.jar”. When using an IBM JVM or JRE, make sure that the file vm.jar is on the CLASS-
PATH - NetRexx will complain about missing java.lang.Object when it is not.

2.5 Testing the NetRexx Installation

After installing NetRexx, it is recommended that you test that it is working correctly. If
there are any problems, check the Installation Problems section. To test your installation,
make the directory towhich you copied the executables the current directory, then (being
very careful to get the case of letters correct):
1. Enter the command

java org.netrexx.process.NetRexxC hello

Make sure that the userid that you are using for this has write authorization for the
directory that contains the source.11 This should run the NetRexx compiler, which
first translates the NetRexx program hello.nrx to the Java program hello.java. It
then invokes the default Java compiler (javac), to compile the file hello.java to
make the binary class file hello.class. The intermediate .java file is then deleted,
unless an error occurred or you asked for it to be kept.

2. Enter the command
java hello

This runs (interprets the bytecodes in) the hello.class file, which should display
a simple greeting. On some systems, you may first have to add the directory that
contains the hello.class file to the CLASSPATH setting so Java can find it.

3. With the sample scripts provided (NetRexxC.cmd,NetRexxC.bat, or NetRexxC.sh,),
or the equivalent in the scripting language of your choice, the steps above can be
combined into a simple single command such as:
NetRexxC.sh –run hello

This package also includes a trivial nrc, and matching nrc.cmd and nrc.bat scripts,
which simply pass on their arguments to NetRexxC; “nrc” is just a shorter name
that saves keystrokes, so for the last example you could type:

nrc –run hello

Note that scripts may be case-sensitive, and you will probably have to spell the
name of the program exactly as it appears in the filename. Also, to use –run, you
may need to omit the .nrx extension. You could also edit the appropriate nrc.cmd,
nrc.bat, or nrc script and add your favourite “default” NetRexxC options there.
For example, you might want to add the –prompt flag (described later) to save

11For example, more modern versions of Windows do not allow non-admin userids to write into the program files directories. In
this case, make a directory under your home directory and copy the hello.nrx file there, and start the nrc command from the same
location.

20

reloading the translator before every compilation. If you do change a script, keep
a backup copy so that if you install a new version of the NetRexx package you
won’t overwrite your changes.

21

3

Installing on an IBMMainframe

3.0.1 EBCDIC Systems: z/OS, z/VM

Prerequisites for z/OS

Realistically, to use NetRexx on z/OS you must have access to an OMVS prompt (z/OS
Unix Systems Services12 shell for 3270 terminals), have access using ssh or telnet, and
Java must be installed. While this access used to be scarce, more and more installations
have this as a standard. Of course, if you are systems programming staff you can arrange
for most of this yourself, and if you are not, you need to befriend the staff that can.
Access to the OMVS command is regulated through a security profile, so your userid

must be in the right RACF, ACF2 or TOP SECRET class. You will need a home direc-
tory specified in this OMVS class, and this directory needs to be mounted, preferably
as a permanent mount.
If this is arranged and working, you need to verify if there is a Java runtime available.

Test this with the command
java -version

Any version of Java will do, although newer is better. Generally, versions from 1.4 to
1.6 are found on mainframes nowadays. If the command is not found, don’t despair; it
might be installed but it may be not found on the $PATH variable. This can be arranged
for in the .profile or .bash profile file in your home direcory. This variable works
just as in other versions of Unix13, see page 19. If Java is not installed, it is time someone
did it; there are SMP/E and non-SMP/E installers (using a shell script) available - the
latter comes in handy for a quick install.

Uploading the NetRexx translator jar

The NetRexx binaries are identical for all operating systems; the same NetRexxC.jar
runs everywhere 14. However, during installation it is important to ensure that binary
files are treated as binary files, whereas text files (such as the accompanying HTML
and sample files) are translated to the local code page as required.
The simplest way to do this is to first install the package on a workstation, following

the instructions above, then copy or FTP the files you need to the mainframe. The files
need to be placed in an HFS to be used by OMVS; FTP can directly places the files in
an HFS home directory, while IND$FILE can place them into a traditional data set.

12IBM Manuals SA22-7801-12 “Unix System Services User’s Guide” and SA22-7802-12 “Unix System Services Reference”
13z/OS is officially a version of Unix, this in addition to everything that it already was
14Many thanks to Mark Cathcart and John Kearney for contributing the details to the original version of this section.

23

Specifically:. The NetRexxC.jar file should be copied as-is, that is, use FTP or other file trans-
fer with the BINARY option. The CLASSPATH should be set to include this Net-
RexxC.jar file. When using IND$FILE as a file transfer mechanism to a traditional
MVS data set, make sure it is allocated as a load library with lrecl 0 and a large
blocksize.. Other files (documentation, etc.) should be copied as Text (that is, they will be trans-
lated from ASCII to EBCDIC).
In general, files with extension .au, .class, .gif, .jar, or .zip are binary files; all others

are text files. You may opt to leave the additional files on a workstation, the mainframe
really only needs the .jar file, NetRexxC.jar (or NetRexxR.jar if you are only planning
to run already compiled classfiles). Setting the classpath might look like this on a recent
z/OS:
CLASSPATH=$CLASSPATH:/opt/ibm/java-s390x-60/lib/tools.jar
CLASSPATH=$CLASSPATH:/opt/ibm/java-s390x-60/jre/lib/s390x/default/jclSC160/vm.jar
CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar
export CLASSPATH

Note that you are free to put the NetRexxC.jar archive in any location, as long as the
classpath correctly refers to it. The vm.jar has to be on the classpath because otherwise
Object.class will not be found by the NetRexxC translator.
When this is done, we can run some tests with it and see that everything works. Edit

a program source file with oedit, which works just like the ISPF/PDF editor and com-
pile or interpret it like we do on other versions of Unix. NetRexx programs can access
HFS (and ZFS) files the same way it does on Windows and Unix, and also network
programming with TCP/IP works in the same way from OMVS.
For a description how NetRexx can be used in a traditional MVS workload environ-

ment, with batch JCL and using VSAM and sequentials data set and PDS directories,
you are referred to the NetRexx Programming Guide).

3.0.2 z/Linux

Installing on z/Linux is straightforward. Make sure the NetRexxC.jar is copied untrans-
lated to the z/Linux file system using ftp, scp or some other file transfer technology, and
take into account that the IBM JVM has Object.class in the vm.jar archive. At the mo-
ment, if not installed already, Java for z/Linux is a free download from the IBMwebsite.
With z/Linux versions that have a VNC server installed and available, Java Graphical
User Interfaces (GUI) can be used without installing X client software.

24

4

Running on a JRE-only environment

4.1 Eclipse Batch Compiler

NetRexx (since the 3.01 package) can be used on a JRE-only environment; it does not
need an SDK (JDK) when the included ecj (Eclipse Compiler for Java) is available on
the classpath. This compiler is a part of the Eclipse JDT Core, which is the Java infras-
tructure of the Java IDE. This is an incremental Java compiler. It is based on technology
evolved from the VisualAge for Java compiler and maintained by IBM and the Eclipse
Foundation. In particular, it allows one to run and debug code which still contains un-
resolved errors. Future releases of NetRexx might be exploring more of the features of
this compiler, like the extensive error reporting and Currently, the 4.2 level of the core
compiler jar is delivered with NetRexx. There are other standalone Java compilers, but
after extensive research we have chosen to include this one. Using the –nocompile and
–keepasjava options it is always possible to substitute your own compilers as subsequent
stages in the build process.

4.2 The nrx.compiler property

The NetRexx language processor is a translator package that either interprets or exe-
cutes NetRexx language source, and (by default) compiles the generated Java language
source code with the SDK-included javac compiler, or rather, the Java compiler class
sun.tools.javac.Main class that is delivered (in most implementations) in the tools.jar
file, that is also called by the javac executable. A new property is introduced to make
the language processor choose the ecj compiler15:
-Dnrx.compiler=ecj

This directs the NetRexxC processor to use the ecj compiler to do the java compile
step instead of javac. For retroactive continuity, this property can also be set to javac-
which is still the default when the property is not specified. The nrc command script
can, on systems that do not have a javac compiler installed, be changed to
java -Dnrx.compiler=ecj org.netrexx.process.NetRexxC $*

In this case all compiles started with the nrc command will use the eclipse compiler.
Only in case of Java compiler errors, when the compiler output will be shown, will the
difference be apparent. When using the Eclipse NetRexx plugin, the ecj compiler will
already be used? Installer support is planned to include this property automatically when

15the -D option is used on the java command line to specify a system property to the java VM

25

during NetRexx installation the javac compiler jar is not detected. When compiling
using the -time option, the right compiler name will be indicated.

4.3 Interpreting

For completeness, it is confirmed here that interpretative execution also works on a
JRE-only system, and does not require a Java compiler.

26

5

Using the translator

This section of the document tells you how to use the translator package. It assumes you
have successfully installed Java and NetRexx, and have tested that the hello.nrx testcase
can be compiled and run, as described in the Testing the NetRexx Installation section
2.5 on page 20.
The NetRexx translator may be used as a compiler or as an interpreter (or it can do

both in a single run, so parsing and syntax checking are only carried out once). It can
also be used as simply a syntax checker.
When used as a compiler, the intermediate Java source code may be retained, if de-

sired. Automatic formatting, and the inclusion of comments from the NetRexx source
code are also options.

5.1 Using the translator as a Compiler

The installation instructions for the NetRexx translator describe how to use the package
to compile and run a simple NetRexx program (hello.nrx). When using the translator
in this way (as a compiler), the translator parses and checks the NetRexx source code,
and if no errors were found then generates Java source code. This Java code (which is
known to be correct) is then compiled into bytecodes (.class files) using a Java compiler.
By default, the javac compiler in the Java toolkit is used.
This section explains more of the options available to you when using the translator

as a compiler.

5.2 The translator command

The translator is invoked by running a Java program (class) which is called
org.netrexx.process.NetRexxC

(NetRexxC, for short). This can be run by using the Java interpreter, for example, by
the command:
java org.netrexx.process.NetRexxC

or by using a system-specific script (such as NetRexxC.cmd. or nrc.bat). In either case,
the compiler invocation is followed by one or more file specifications (these are the
names of the files containing the NetRexx source code for the programs to be compiled).
File specifications may include a path; if no path is given then NetRexxC will look

in the current (working) directory for the file. NetRexxC will add the extension .nrx to

27

input program names (file specifications) if no extension was given.
So, for example, to compile hello.nrx in the current directory, you could use any of:

java org.netrexx.process.NetRexxC hello
java org.netrexx.process.NetRexxC hello.nrx
NetRexxC hello.nrx
nrc hello

(the first two should always work, the last two require that the system-specific script be
available). The resulting .class file is placed in the current directory, and the .crossref
(cross-reference) file is placed in the same directory as the source file (if there are any
variables and the compilation has no errors).
Here’s an example of compiling two programs, one of which is in the directory

d:\myprograms:
nrc hello d:\textbackslash myprograms\textbackslash test2.nrx

In this case, again, the .class file for each program is placed in the current directory.
Note that when more than one program is specified, they are all compiled within the

same class context. That is, they can see the classes, properties, and methods of the
other programs being compiled, much as though they were all in one file. 16 This allows
mutually interdependent programs and classes to be compiled in a single operation. Note
that if you use the package instruction you should also read themore detailedCompiling
multiple programs section.
On completion, the NetRexxC class will exit with one of three return values: 0 if the

compilation of all programs was successful, 1 if there were one or more Warnings, but
no errors, and 2 if there were one or more Errors.
As well as file names, you can also specify various option words, which are distin-

guished by the word being prefixed with -. These flagged words (or flags) may be any of
the option words allowed on the NetRexx options instruction (see the NetRexx langua-
gen documentation). These options words can be freely mixed with file specifications.
To see a full list of options, execute the NetRexxC command without specifying any
files.
The translator also implements some additional option words, which control compi-

lation features. These cannot be used on the options instruction, and are:
-keep keep the intermediate .java file for each program. It is kept in the same directory

as the NetRexx source file as xxx.java.keep, where xxx is the source file name. The
file will also be kept automatically if the javac compilation fails for any reason.

-nocompile do not compile (just translate). Use this option when you want to use a dif-
ferent Java compiler. The .java file for each program is kept in the same directory
as the NetRexx source file, as the file xxx.java.keep (where xxx is the source file
name).

-noconsole do not display compilermessages on the console (command display screen).
This is usually used with the savelog option.

-savelog write compiler messages to the file NetRexxC.log, in the current directory.
This is often used with the noconsole option.

-time display translation, javac compile, and total times (for the sum of all programs
processed).

16The programs do, however, maintain their independence (that is, they may have different options, import, and package in-
structions).

28

-run run the resulting Java class as a stand-alone application, provided that the compi-
lation had no errors. (See note below.)

Here are some examples:
java org.netrexx.process.NetRexxC hello -keep -strictargs
java org.netrexx.process.NetRexxC -keep hello wordclock
java org.netrexx.process.NetRexxC hello wordclock -nocompile
nrc hello
nrc hello.nrx
nrc -run hello
nrc -run Spectrum -keep
nrc hello -binary -verbose1
nrc hello -noconsole -savelog -format -keep

Optionwordsmay be specified in lowercase, mixed case, or uppercase. File specifica-
tions are platform-dependent and may be case sensitive, though NetRexxC will always
prefer an exact case match over a mismatch.
Note: The -run option is implemented by a script (such as nrc.bat or NetRexxC.cmd),

not by the translator; some scripts (such as the .bat scripts) may require that the -run be
the first word of the command arguments, and/or be in lowercase. Theymay also require
that only the name of the file be given if the -run option is used. Check the commentary
at the beginning of the script for details.

5.3 Compiling multiple programs and using packages

When you specify more than one program for NetRexxC to compile, they are all com-
piled within the same class context: that is, they can see the classes, properties, and
methods of the other programs being compiled, much as though they were all in one
file.
This allows mutually interdependent programs and classes to be compiled in a single

operation. For example, consider the following two programs (assumed to be in your
current directory, as the files X.nrx and Y.nrx):

Listing 5.1: Dependencies
1 /∗ X.nrx ∗/
2 class X
3 why=Y null
4

5 /∗ Y.nrx ∗/
6 class Y
7 exe=X null

Each contains a reference to the other, so neither can be compiled in isolation. However,
if you compile them together, using the command:
nrc X Y

the cross-references will be resolved correctly.
The total elapsed time will be significantly less, too, as the classes on the CLASS-

PATH need to be located only once, and the class files used by the NetRexxC compiler
or the programs themselves will also only be loaded (and JIT-compiled) once.
This example works as you would expect for programs that are not in packages.

There’s a restriction, though, if the classes you are compiling are in packages (that is,

29

they include a package instruction). Currently, NetRexxC uses the javac compiler to
generate the .class files, and for mutually-dependent files like these, javac requires that
the source files be in the Java CLASSPATH, in the sub-directory described by the pack-
age instruction.
So, for example, if your project is based on the tree:

D:\textbackslash myproject

if the two programs above specified a package, thus:

Listing 5.2: Package Dependencies
1 /∗ X.nrx ∗/
2 package foo.bar
3 class X
4 why=Y null
5

6 /∗ Y.nrx ∗/
7 package foo.bar
8 class Y
9 exe=X null

1. You should put these source files in the directory: D:\myproject\foo\bar
2. The directory D:\myproject should appear in your CLASSPATH setting (if you

don’t do this, javac will complain that it cannot find one or other of the classes).
3. You should then make the current directory be D:\myproject\foo\bar and then

compile the programs using the command nrc X Y, as above.
With this procedure, you should end up with the .class files in the same directory as

the .nrx (source) files, and therefore also on the CLASSPATHand immediately usable by
other packages. In general, this arrangement is recommended whenever you are writing
programs that reside in packages.
Notes:
1. When javac is used to generate the .class files, no new .class files will be created if

any of the programs being compiled together had errors - this avoids accidentally
generating mixtures of new and old .class files that cannot work with each other.

2. If a class is abstract or is an adapter class then it should be placed in the list before
any classes that extend it (as otherwise any automatically generated methods will
not be visible to the subclasses).

5.4 Programmatic use of the NetRexxC translator

NetRexxC can be used in a program, to compile NetRexx programs from files, or to
compile from strings in memory. Both uses are beyond the scope of this Quick Start
Guide and are documented in the Programming Guide.

30

6

Using the prompt option

The prompt option may be be used for interactive invocation of the translator. This
requests that the processor not be ended after a file (or set of files) has been processed.
Instead, you will be prompted to enter a new request. This can either repeat the process
(perhaps if you have altered the source in the meantime), specify a new set of files, or
alter the processing options.
On the second and subsequent runs, the processor will re-use class information loaded
on the first run. Also, the classes of the processor itself (and the javac compiler, if used)
will not need to be verified and JIT-compiled again. These savings allow extremely fast
processing, as much as fifty times faster than the first run for small programs.
When you specify -prompt on a NetRexxC command, the NetRexx program (or pro-
grams) will initially be processed as usual, according to the other flags specified. Once
processing is complete, you will be prompted thus:
Enter new files and additional options, ’=’ to repeat, ’exit’ to end:

.
At this point, you may enter:. One or more file names (with or without additional flags): the previous process, mod-
ified by any new flags, is repeated using the source file or files specified. Files named
previously are not included in the process (unless they are named again in the new
list of names).. Additional flags (without any new files): the previous process, modified by the new
flags, is repeated, on the same files as before. Note that flags are accumulated; that
is, flags are not reset to defaults between prompts.. The character = this simply repeats the previous process, on the same file or files
(whichmay have had their contents changed since the last process) and using the same
flags. This is especially useful when you simply wish to re-compile (or re-interpret,
see below) the same file or files after editing.. Theword exit, which causes NetRexxC to cease execution without anymore prompts.. Nothing (just press Enter or the equivalent) – usage hints, including the full list of
possible options, etc., are displayed and you are then prompted again.

31

6.1 Using the translator as an Interpreter

In addition to being used as a compiler, the translator also includes a true NetRexx in-
terpreter, allowing NetRexx programs to be run on the Java 2 (1.2) platform without
needing a compiler or generating .class files.
The startup time for running programs can therefore be significantly reduced as no Java
source code or compilation is needed, and also the interpreter can give better runtime
support (for example, exception tracebacks are localized to the programs being inter-
preted, and the location of an exception will be identified often to the nearest token in a
term or expression).
Further, in a single run, a NetRexx program can be both interpreted and then compiled.
This shares the parsing between the two processes, so the .class file is produced without
the overhead of re-translating and re-checking the source.

6.1.1 Interpreting programs

The NetRexx interpreter is currently designed to be fully compatible with NetRexx pro-
grams compiled conventionally. There are some minor restrictions (see section 8 on
page 37), but in general any program that NetRexxC can compile without error should
run. In particular, multiple programs, threads, event listeners, callbacks, and Minor (in-
ner) classes are fully supported.
To use the interpreter, use the NetRexxC command as usual and specify either of the
following command options (flags):
-exec after parsing, execute (interpret) the program or programs by calling the static

main(String[]) method on the first class, with an empty array of strings as the
argument. (If there is no suitable main method an error will be reported.)

-arg words... as for -exec, except that the remainder of the command argument string
passed to NetRexxC will be passed on to the main method as the array of argument
strings, instead of being treated as file specifications or flags. Specifying -noarg is
equivalent to specifying -exec; that is, an empty array of argument strings will be
passed to the main method (and any remaining words in the command argument
string are processed normally).

When any of -exec, -arg, or -noarg is specified, NetRexxC will first parse and check
the programs listed on the command. If no error was found, it will then run them by
invoking the main method of the first class interpretively.
Before the run starts, a line similar to:
===== Exec: hello =====

will be displayed (you can stop this and other progress indicators being displayed by
using the -verbose0 flag, as usual).
Finally, after interpretation is complete, the programs are compiled in the usual way,

unless -nojava17 or -nocompile was specified.
For example, to interpret the hello world program without compilation, the command:
nrc hello -exec -nojava

17The -nojava flag stops any Java source being produced, so prevents compilation. This flagmay be used to force syntax-checking
of a program while preventing compilation, and with optional interpretation.

32

can be used. If you are likely to want to re-interpret the program (for example, after
changing the source file) then also specify the -prompt flag, as described above. This
will give very much better performance on the second and subsequent interpretations.
Similarly, the command:
nrc hello -nojava -arg Hi Fred!

would invoke the program, passing the words Hi Fred! as the argument to the program
(you might want to add the line say arg to the program to demonstrate this).
You can also invoke the interpreter directly from another NetRexx or Java program, as
described in The NetRexx Programming Guide.

6.2 Interpreting – Hints and Tips

When using the translator as an interpreter, you may find these hints useful:. If you can, use the -prompt command line option (see above). This will allow very
rapid re-interpretation of programs after changing their source.. If you don’t want the programs to be compiled after interpretation, specify the -nojava
option, unless you want the Java source code to be generated in any case (in which
case specify -nocompile, which implies -keep).. By default, NetRexxC runs fairly noisily (with a banner and logo display, and progress
of parsing being shown). To turn off these messages during parsing (except error
reports and warnings) use the -verbose0 flag.. If you are watching NetRexx trace output while interpreting, it is often a good idea
to use the -trace1 flag. This directs trace output to the standard output stream, which
will ensure that trace output and other output (for example, from say instructions) are
synchronized.. Use the NetRexx exit instruction (rather than the System.exit() method call) to end
windowing (AWT) applications which are to be interpreted. This will allow the in-
terpreter to correctly determine when the application has ended. This is discussed
further in the

6.3 Interpreting – Performance

The initial release of the interpreter, in the NetRexx 2.0 reference implementation, di-
rectly and efficiently interprets NetRexx instructions. However, to assure the stability
of the code, terms and expressions within instructions are currently fully re-parsed and
checked each time they are executed. This has the effect of slowing the execution of
terms and expressions significantly; performance measurements on the initial release
are therefore unlikely to be representative of later versions that might be released in the
future.
For example, at present a loop controlled using loop for 1000will be interpreted around
50 times faster than a loop controlled by loop i=1 to 1000, even in a binary method,
because the latter requires an expression evaluation each time around the loop.

33

7

Troubleshooting

1. Can’t find class org.netrexx.process.NetRexxC... message probably means that the
NetRexxC.jar file has not been specified in your CLASSPATH setting, or is mis-
spelled, or is in the wrong case, or (for Java 1.2 or later) is not in the Java \lib\ext
directory. Note that in the latter case there are two lib directories in the Java tree;
the correct one is in the Java Runtime Environment directory (jre). The Setting the
CLASSPATH section contains information on setting the CLASSPATH.

2. +++ Error: The class ’java.lang.Object’ cannot be found. You are running with an
IBM JVM or JRE. The java.lang.Object class is packaged in the file vm.jar, which
needs to be on your CLASSPATH

3. Can’t find class hello... message may mean that the directory with the hello.class
file is not in your CLASSPATH (you may need to add a ?.;’ to the CLASSPATH,
signifying the current directory), or either the filename or name of the class (in the
source) is spelled wrong (the java command is [very] case-sensitive). Note that the
name of the class must not include the .class extension.

4. The compiler appears to work, but towards the end fails with Exception ... No-
ClassDefFoundError: sun/tools/javac/Main. This indicates that you are running
Java 1.2 or later but did not add the Java tools to your CLASSPATH (hence Java
could not find the javac compiler). See the Installing for Java 1.2+ section for more
details, and an alternative action. Alternatively, you may be trying to use NetRexx
under Visual J++, which needs a different procedure. You can check whether javac
is available and working by issuing the javac command at a command prompt; it
should respond with usage instructions.

5. You receive the message “Error opening the file ’hello.java’[C:\Program Files(86)
\javajdk1 7.0.05 jrebinhello.java (Access is denied)] - your userid needs write
authorization on the current directory. Please copy the source file to a writeable
directory and try again.

6. You have an extra blank or two in the CLASSPATH. Blanks should only occur
in the middle of directory names (and even then, you probably need some double
quotes around the SET command or the CLASSPATH segment with the blank).
The JVM is sensitive about this.

7. You are trying the NetRexxC.sh or nrc scripts under Linux or other Unix system,
and are getting a Permission denied message. This probably means that you have
not marked the scripts as being executable. To do this, use the chmod command,
for example: chmod 751 NetRexxC.sh.

8. You are trying the NetRexxC.sh or nrc scripts under Linux or other Unix system,
and are getting a No such file or syntax error message from bash. This probably

35

means that you did not use the unzip -a command to unpack the NetRexx package,
so CRLF sequences in the scripts were not converted to LF.

9. You didn’t install on a file system that supports long file names (for example, on
OS/2 or Windows you should use an HPFS or FAT32 disk or equivalent). Like
most Java applications, NetRexx uses long file names.

10. You have a down-level unzip utility, or changed the name of the NetRexxC.jar file
so that it does not match the spelling in the classpath. For example, check that the
name of the file ?NetRexxC.jar’ is exactly that, with just three capital letters.

11. You have only the Java runtime installed, and not the toolkit. If the toolkit is in-
stalled, you should have a program called javac on your computer. You can check
whether javac is available and working by issuing the javac command at a com-
mand prompt; it should respond with usage information.

12. An Out of environment space message when trying to set CLASSPATH under
Win9x-DOS can be remedied by adding /e:4000 to the ?Cmd line’ entry for the
MS-DOS prompt properties (try command /? for more information).

13. An exception, apparently in the RexxUtil.translate method, when compiling with
Microsoft Java SDK 3.1 (and possibly later SDKs) is caused by a bug in the Just
In Time compiler (JIT) in that SDK. Turn off the JIT using Start -> Settings -
> Control Panel -> Internet to get to the Internet Properties dialog, then select
Advanced, scroll to the Java VM section, and uncheck ?Java JIT compiler en-
abled’. Alternatively, turn of the JIT by setting the environment variable: SET
MSJAVA ENABLE JIT=0 (this can be placed in a batch file which invokes Net-
RexxC, if desired).

14. java.lang.OutOfMemoryError when running the compiler probably means that the
maximum heap size is not sufficient. The initial size depends on your Java vir-
tual machine; you can change it to (say) 24 MegaBytes by setting the environment
variable: SET NETREXX JAVA=-mx24M In Java 1.2.2 or later, use: SET NET-
REXX JAVA=-Xmx24M

15. The NetRexxC.cmd and .bat files add the value of this environment variable to the
options passed to java.exe. If you’re not using these, modify your java command
or script appropriately.

16. You have a down-level version of Java installed. NetRexxC will run only on Java
version 1.1.2 (and later versions). You can check the version of Java you have
installed using the command ?java -version’.

17. Included in the documentation collection are a number of examples and samples
(Hello, HelloApplet, etc.). To run any of these, you must have Java installed.

18. Further, some of the samples must be viewed using the Java toolkit applet-viewer
or a Java-enabled browser. Please see the hypertext pages describing these for
detailed instructions. In general, if you see a message from Java saying: void
main(String argv[]) is not defined this means that the class cannot be run using
just the ?java’ command; it must be run from another Java program, probably as
an applet.

36

8

Current Restrictions

The NetRexx translator is now functionally complete, though work continues on us-
ability and performance improvements. As of this version there are still a number of
restrictions, listed below. Please note that the presence of an item in this section is not a
commitment to remove a restriction in some future update; NetRexx enhancements are
dependent on on-going research, your feedback, and available resources. You should
treat this list as a “wish-list” (and please send in your wishes, preferable as an RFE on
the http://kenai.com/projects/netrexx website).

8.1 General restrictions

1. The translator requires that Java 1.1.2 or later be installed. To use the interpreter
functions, at least Java 1.2 (Java 2) is required. Note that Java 6 is the current
version, so the chance that you will be impacted by this is minimal.

2. Certain forward references (in particular, references to methods later in a program
from the argument list of an earlier method) are not handled by the translator. For
these, try reordering the methods.

8.2 Compiler restrictions

The following restrictions are due to the use of a translator for compiling, and would
probably only be lifted if a direct-to-bytecodesNetRexx compiler were built. Externally-
visible names (property, method, and class names) cannot be Java reserved words (you
probably want to avoid these anyway, as people who have to write in Java cannot refer
to them), and cannot start with “$0”.
1. There are various restrictions on naming and the contents of programs (the first

class name must match the program name, etc.), required to meet Java rules.
2. The javac compiler requires thatmutually-dependent source files be on theCLASS-

PATH, so it can find the source files. NetRexxC does not have this restriction, but
when using javac for the final compilation you will need to follow the convention
described in the Compiling multiple programs and using packages section (see
page 23).

3. The symbols option (which requests that debugging information be added to gener-
ated .class files) applies to all programs compiled together if any of them specify
that option.

37

http://kenai.com/projects/netrexx

4. Some binary floating point underflows may be treated as zero instead of being
trapped as errors.

5. When trace is used, side-effects of calls to this() and super() in constructors may
be seen before the method and method call instructions are traced – this is because
the Java language does not permit tracing instructions to be added before the call
to this() or super().

6. The results of expressions consisting of the single term “null” are not traced.
7. When a minor (inner) class is explicitly imported, its parent class or classes must

also be explicitly imported, or javac will report that the class cannot be found.
8. If you have a loop construct with a large number (perhaps hundreds) of instructions

inside it, running the compiled class may fail with an illegal target of jump or
branch verification error (or, under Java 1.1, simply terminate execution after one
iteration of the loop). This is due to a bug in javac one workaround is to move some
of the code out of the loop, perhaps into a private method. (The following problem
may occur in larger methods, with Java 1.1.2; it seems to have been fixed in later
versions of Java): NetRexxC does not restrict the number of local variables used or
generated. However, the 1.1.2 javac compiler fails with unrelated error messages
(such as statement unreachable or variable may be uninitialized) if asked to handle
more than 63 local variables.

8.3 Interpreter restrictions

Interpreting Java-based programs is complex, and is constrained by various security
issues and the architecture of the Java Virtual Machine. As a result, the following re-
strictions apply; these will not affect most uses of the interpreter.
1. For interpretation to proceed, when any of –exec, –arg, or –noarg is specified, you

must be running a Java 2 JVM (Java Virtual Machine). That is, the command “java
–version” should report a version of 1.2 or later. Parsing and compilation, however,
only require Java 1.1.2.

2. Certain “built-in” Java classes (notably java.lang.Object, java.lang.String, and
java.lang.Throwable) are constrained by the JVM in that they are assumed to be
pre-loaded. An attempt to interpret them is allowed, but will cause the later loading
of any other classes to fail with a class cast exception. Interpreted classes have a
stub which is loaded by a private class loader. This means that they will usually not
be visible to external (non-interpreted) classes which attempt to find them explic-
itly using reflection, Class.forName(), etc. Instead, these calls may find compiled
versions of the classes from the classpath. Therefore, to find the “live” classes
being interpreted, use the NetRexxA interpreter API interface (described below).

3. An interpreter cannot completely emulate the actions taken by the Java Virtual
Machine as it closes down. Therefore, special rules are followed to determinewhen
an application is assumed to have ended when interpreting (that is, when any of
–exec, –arg, or –noarg is specified): • If the application being interpreted invokes
the exit method of the java.lang.System class, the run ends immediately (even if
–prompt was specified). The call cannot be intercepted by the interpreter, and is
assumed to be an explicit request by the application to terminate the process and
release all resources. In other cases, NetRexxC has to decide when the application

38

ends and hence when to leave NetRexxC (or display the prompt, if –prompt was
specified). The following rules apply:
(a) If any of the programs being interpreted contains the NetRexx exit instruction

and the application leaves extra user threads active after the main method ends
then NetRexxC will wait for an exit instruction to be executed before assum-
ing the application has ended and exiting (or re-prompting). Otherwise (that
is, there are no extra threads, or no exit instruction was seen) the application is
assumed to have ended as soon as the main method returns and in this case the
run ends (or the prompt is shown) immediately. This rule allows a program
such as “hello world” to be run after a windowing application (which leaves
threads active) without a deadlocked wait. These rules normally “do the right
thing”. Applications which create windows may, however, appear to exit pre-
maturely unless they use the NetRexx exit instruction to end their execution,
because of the last rule.

(b) Applications which include both thread creation and an exit instruction which
is never executed will wait indefinitely and will need to be interrupted by an
external “break” request, or equivalent, just as they would if run from com-
piled classes.

(c) Interpreting programs which set up their own security managers may prevent
correct operation of the interpreter.

39

List of Figures

41

List of Tables

43

Listings

1Example Listing . iii
1.1Toast . 1
1.2Assignment . 2
1.3Greet . 2
1.4Continuation . 3
1.5Multiple Instructions . 3
1.6Conditional . 3
1.7select - when - otherwise . 3
1.8do - end . 3
1.9loop - end . 4
1.10Digits . 4
1.11Strings . 5
1.12Rexx: Nested . 5
1.13Parsing Strings . 6
1.14Parse . 6
1.15Parse with comma . 6
1.16Index . 7
1.17Retrieving . 7
1.18Woof . 7
1.19Multiple Dimensions . 7
1.20justonetest.nrx . 7
1.21Arrays . 8
1.22Initializing elements . 8
1.23Address Array Element . 8
1.24Oblong . 9
1.25Try Oblong . 9
1.26New Toast . 10
1.27charOblong.nrx . 10
1.28tryCharOblong.nrx . 11
1.29Default value X . 11
1.30Default value . 11
1.31Trace . 12
1.32trace2.nrx . 13
1.33Assigning Type . 14
1.34A Simple Applet . 15
1.35Exception . 15

45

5.1Dependencies . 29
5.2Package Dependencies . 30

46

Index

Rexx, 10

arg, 10

case, 3

catch, 15

class, 9, 10, 15, 29, 30

digits, 4

do, 3, 15

else, 2, 3

end, 3, 4, 7, 8, 10, 15

exit, 3, 7

extends, 10, 15

for, 10

if, 2, 3, 7

iterate, 7

loop, 4, 7, 8, 10, 15

method, 7, 9–11, 15

numeric, 4

otherwise, 3

package, 30

parse, 6, 7, 12

properties, 9

return, 7, 9

returns, 9

say, iii, 1–5, 7–10, 12–15

select, 3

set, 8, 10, 15

static, 7, 10

super, 10

then, 2, 3, 7

this, 9

to, 4, 8, 9, 14, 15

trace, 12, 13

when, 3, 9

while, 7

arg option, 32

command, for compiling, 27

compiling, NetRexx programs, 27

compiling,interactive, 31

compiling,multiple programs, 29

compiling,packages, 29

completion codes, from translator, 28

EBCDIC installations, 23

exec option, 32

file specifications, 27

flag, nocompile, 28

flag, noconsole, 28

flag, run, 29

flag, savelog, 28

flag, time, 28

flag,arg, 32

flag,exec, 32

flag,keep, 28

flag,nocompile, 32

flag,nojava, 32

flag,prompt, 31

flag,trace1, 33

flag,verbose, 32

flags, 28

installation,EBCDIC systems, 23

installation,runtime only, 19

interactive translation, 31

interactive translation,exiting, 31

interactive translation,repeating, 31

interpreting,hints and tips, 33

interpreting,NetRexx programs, 32

interpreting,performance, 33

jar command, used for unzipping, 18

keep option, 28

NetRexx package, 18

NetRexxC, class, 27

NetRexxC, scripts, 27

NetRexxR runtime classes, 19

nocompile option, 28, 32

noconsole option, 28

nojava option, 32

nrc scripts, 27

option words, 28

option, nocompile, 28

option, noconsole, 28

option, run, 29

option, savelog, 28

option, time, 28

option,arg, 32

option,exec, 32

option,keep, 28

option,nocompile, 32

option,nojava, 32

47

option,prompt, 31

option,trace1, 33

option,verbose, 32

package/NetRexx, 18

packages, compiling, 29

performance, while interpreting, 33

projects, compiling, 29

prompt option, 31

return codes, from translator, 28

run option, 29

runtime,installation, 19

savelog option, 28

scripts, NetRexxC, 27

scripts, nrc, 27

time option, 28

trace1 option, 33

unpacking, 18

using the translator, 27

using the translator, as a Compiler, 27

using the translator,as an Interpreter, 32

verbose option, 32

zip files, unpacking, 18

48

9 789081 909020

ISBN 978-90-819090-2-0

49

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	Requirements
	A Quick Tour of NetRexx
	NetRexx programs
	Expressions and variables
	Control instructions
	NetRexx arithmetic
	Doing things with strings
	Parsing strings
	Indexed strings
	Arrays
	Things that aren’t strings
	Extending classes
	Tracing
	Binary types and conversions
	Exception and error handling
	Summary and Information Sources

	Installation
	Unpacking the NetRexx package
	Installing the NetRexx Translator
	Installing just the NetRexx Runtime
	Setting the CLASSPATH
	Testing the NetRexx Installation

	Installing on an IBM Mainframe
	Running on a JRE-only environment
	Eclipse Batch Compiler
	The nrx.compiler property
	Interpreting

	Using the translator
	Using the translator as a Compiler
	The translator command
	Compiling multiple programs and using packages
	Programmatic use of the NetRexxC translator

	Using the prompt option
	Using the translator as an Interpreter
	Interpreting – Hints and Tips
	Interpreting – Performance

	Troubleshooting
	Current Restrictions
	General restrictions
	Compiler restrictions
	Interpreter restrictions

	List of Figures
	List of Tables
	Index

