
NetRexx
QuickStart Guide
Mike Cowlishaw and RexxLA

Version 4.01-GA of March 20, 2021

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-2-0

Publication Data

©Copyright The Rexx Language Association, 2011- 2021

All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

This edition is registered under ISBN 978-90-819090-2-0

9 789081 909020

ISBN 978-90-819090-2-0

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

The NetR Programming Series i

Introduction ii

1 A Quick Tour of NetR 1

1.1 NetREXX programs 1

1.2 Expressions and variables 2

1.3 Control instructions 3

1.4 NetREXX arithmetic 4

1.5 Doing things with strings 5

1.6 Parsing strings 6

1.7 Indexed strings 7

1.8 Arrays 8

1.9 Things that aren’t strings 9

1.10 Extending classes 11

1.11 Tracing 12

1.12 Binary types and conversions 14

1.13 Exception and error handling 16

1.14 Summary and Information Sources 16

2 Requirements 18

3 Installation 19

3.1 Unpacking the NetREXX package 19

3.2 The NetREXX packages 20

3.3 First steps with NetREXX 21

3.4 Installing the NetREXX Translator 22

3.5 Installing just the NetREXX Runtime 22

3.6 Setting the CLASSPATH 23

3.7 Testing the NetREXX Installation 24

4 Unicode 26

II

5 Running on a JRE-only environment 27

5.1 Eclipse Batch Compiler 27

5.2 The -ecj and -javac translator options 27

5.3 The netrexx_java environment variable 28

5.4 Passing options to the Java Compiler 28

5.5 Interpreting 28

6 Using the prompt option 29

7 Using the translator as an Interpreter 30

7.1 Interpreting – Hints and Tips 31

7.2 Interpreting – Performance 32

8 Installing on an IBMMainframe 33

9 ARM ABI Remarks 36

10 Installing and running on the BeagleBone Black 37

11 Installing and running on the Raspberry Pi 39

12 Current Restrictions 41

12.1 General restrictions 41

12.2 Compiler restrictions 41

12.3 Interpreter restrictions 42

13 Troubleshooting 44

Index 47

III

The NetR Programming Series

This book is part of a library, the NetR Programming Series, documenting
the NetREXX programming language and its use and applications. This section
lists the other publications in this series, and their roles. These books can be or-
dered in convenient hardcopy and electronic formats from the Rexx Language
Association.

Quick Start Guide This guide is meant for an audience that
has done some programming and wants
to start quickly. It starts with a quick
tour of the language, and a section on in-
stalling the NetREXX translator and how
to run it. It also contains help for trou-
bleshooting if anything in the installation
does notwork as designed, and states cur-
rent limits and restrictions of the open
source reference implementation.

Programming Guide The Programming Guide is the one man-
ual that at the same time teaches pro-
gramming, shows lots of examples as they
occur in the real world, and explains
about the internals of the translator and
how to interface with it.

Language Reference Referred to as the NRL, this is meant as
the formal definition for the language,
documenting its syntax and semantics,
and prescribingminimal functionality for
language implementors.

Pipelines Guide & Reference The Data Flow oriented companion to
NetREXX, with its CMS Pipelines com-
patible syntax, is documented in this
manual. It discusses running Pipes for
NetREXX in the command shell and the
Workspace, and has ample examples of
defining your own stages in NetREXX.

i

Introduction

This document is the Quick Start Guide for the reference implementation of
NetREXX. NetREXX is a human-oriented programming language which makes
writing and using Java1 classes quicker and easier than writing in Java. It is
part of the Rexx language family, under the governance of the Rexx Language
Association.2 NetREXX has been developed and was made available as a free
download by IBM since 1995 and is free and open source since June 8, 2011.
In this Quick Start Guide, you’ll find information on

1. How easy it is to write for the JVM: A Quick Tour of NetREXX
2. Installing NetREXX
3. Current restrictions.
4. Using the NetREXX translator as a compiler, interpreter, or syntax checker
5. Troubleshooting when things do not work as expected

The NetREXX documentation and software are distributed by The Rexx Lan-
guage Association under the ICU license. For the terms of this license, see the
included LICENSE file in this package.
For details of theNetREXX language, and the latest news, downloads, etc., please
see theNetREXX documentation includedwith the package or available at: http:
//www.netrexx.org.

Starting with NetREXX 4, JDK versions 7 and higher are supported. In this ver-
sion, the Java Platform Module System (JPMS) is fully supported. The trans-
lator, when used as compiler as well as in interpreter mode, runs in all current
versions of the JDK.

1Java is a trademark of Oracle, Inc.
2http.www.rexxla.org

ii

http://www.netrexx.org
http://www.netrexx.org
http.www.rexxla.org

1

A Quick Tour of NetR

This chapter summarizes the main features of NetREXX, and is intended to help
you start using it quickly. It is assumed that you have some knowledge of pro-
gramming in a language such as Rexx, C, BASIC, or Java, but extensive experi-
ence with programming is not needed.
This is not a complete tutorial, though – think of it more as a taster; it covers the
main points of the language and shows some examples you can try or modify.
For full details of the language, consult the NetREXX Programmer’s Guide and
the NetREXX Language Definition documents.

1.1 NetR programs

The structure of a NetREXX program is extremely simple. This sample program,
“toast”, is complete, documented, and executable as it stands:

/∗ This wishes you the best of health. ∗/
say 'Cheers!'

This program consists of two lines: the first is an optional comment that de-
scribes the purpose of the program, and the second is a say instruction. say
simply displays the result of the expression following it – in this case just a lit-
eral string (you can use either single or double quotes around strings, as you
prefer). To run this program using the reference implementation of NetREXX,
create a file called toast.nrx and copy or paste the two lines above into it. You
can then use the NetREXXC Java program to compile it:

java org.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to
run it:

java toast

You may also be able to use the netrexxc or nrc command to compile and run
the programwith a single command (details may vary – see the installation and
user’s guide document for your implementation of NetREXX):

netrexxc toast –run

Of course, NetREXX can do more than just display a character string. Although
the language has a simple syntax, and has a small number of instruction types,

1

it is powerful; the reference implementation of the language allows full access
to the rapidly growing collection of Java programs known as class libraries, and
allows new class libraries to be written in NetREXX. The rest of this overview in-
troducesmost of the features of NetREXX. Since the economy, power, and clarity
of expression inNetREXX is best appreciated with use, you are urged to try using
the language yourself.

1.2 Expressions and variables

Like say in the “toast” example, many instructions in NetREXX include expres-
sions that will be evaluated. NetREXX provides arithmetic operators (including
integer division, remainder, and power operators), several concatenation oper-
ators, comparison operators, and logical operators. These can be used in any
combination within a NetREXX expression (provided, of course, that the data
values are valid for those operations).
All the operators act upon strings of characters (known as NetR strings),
which may be of any length (typically limited only by the amount of storage
available). Quotes (either single or double) are used to indicate literal strings,
and are optional if the literal string is just a number. For example, the expres-
sions:

’2’ + ’3’
’2’ + 3
2 + 3

would all result in ’5’.
The results of expressions are often assigned to variables, using a conventional
assignment syntax:

var1=5 /∗ sets var1 to '5' ∗/
var2=(var1+2)∗10 /∗ sets var2 to '70' ∗/

You can write the names of variables (and keywords) in whatever mixture of
uppercase and lowercase that you prefer; the language is not case-sensitive. This
next sample program, “greet”, shows expressions used in various ways:
/∗ A short program to greet you. ∗/
/∗ First display a prompt: ∗/
say 'Please type your name and then press ENTER:'
answer=ask /∗ Get the reply into ANSWER ∗/

/∗ If nothing was typed, then use a fixed greeting, ∗/
/∗ otherwise echo the name politely. ∗/
if answer='' then say 'Hello Stranger!'

else say 'Hello' answer'!'

After displaying a prompt, the program reads a line of text from the user (“ask”
is a keyword provided by NetREXX) and assigns it to the variable answer. This is
then tested to see if any characters were entered, and different actions are taken
accordingly; for example, if the user typed “Fred” in response to the prompt,
then the program would display:

2

Hello Fred!

As you see, the expression on the last say (display) instruction concatenated the
string “Hello” to the value of variable answer with a blank in between them (the
blank is here a valid operator, meaning “concatenate with blank”). The string
“!” is then directly concatenated to the result built up so far. These unobtrusive
operators (the blank operator and abuttal) for concatenation are very natural
and easy to use, and make building text strings simple and clear.
The layout of instructions is very flexible. In the “greet” example, for instance,
the if instruction could be laid out in a number of ways, according to personal
preference. Line breaks can be added at either side of the then (or following the
else).
In general, instructions are ended by the end of a line. To continue a instruction
to a following line, you can use a hyphen (minus sign) just as in English:

say 'Here we have an expression that is quite long,' –
'so it is split over two lines'

This acts as though the two lines were all on one line, with the hyphen and any
blanks around it being replaced by a single blank. The net result is two strings
concatenated together (with a blank in between) and then displayed. When de-
sired, multiple instructions can be placed on one line with the aid of the semi-
colon separator:

if answer='Yes' then do; say 'OK!'; exit; end

(many people findmultiple instructions on one line hard to read, but sometimes
it is convenient).

1.3 Control instructions

NetREXXprovides a selection of control instructions, whose formwas chosen for
readability and similarity to natural languages. The control instructions include
if... then... else (as in the “greet” example) for simple conditional processing:

if ask='Yes' then say "You answered Yes"
else say "You didn't answer Yes"

select... when... otherwise... end for selecting from a number of alterna-
tives:

select
when a>0 then say 'greater than zero'
when a<0 then say 'less than zero'
otherwise say 'zero'
end

select case i+1
when 1 then say 'one'
when 1+1 then say 'two'
when 3, 4, 5 then say 'many'
end

do... end for grouping:

3

if a>3 then do
say 'A is greater than 3; it will be set to zero'
a=0

end

and loop... end for repetition:

/∗ repeat 10 times; I changes from 1 to 10 ∗/
loop i=1 to 10
say i
end i

The loop instruction can be used to step a variable to some limit,by some incre-
ment, for a specified number of iterations, andwhile or until some condition
is satisfied. loop forever is also provided, and loop over can be used to work
through a collection of variables.
Loop execution may be modified by leave and iterate instructions that sig-
nificantly reduce the complexity of many programs. The select, do, and loop
constructs also have the ability to “catch” exceptions (see 1.13 on page 16.) that
occur in the body of the construct. All three, too, can specify a finally instruc-
tion which introduces instructions which are to be executed when control leaves
the construct, regardless of how the construct is ended.

1.4 NetR arithmetic

Character strings in NetREXX are commonly used for arithmetic (assuming, of
course, that they represent numbers). The string representation of numbers can
include integers, decimal notation, and exponential notation; they are all treated
the same way. Here are a few:

’1234’
’12.03’
’–12’
’120e+7’

The arithmetic operations in NetREXX are designed for people rather than ma-
chines, so are decimal rather than binary, do not overflow at certain values, and
follow the rules that people use for arithmetic. The operations are completely
defined by the ANSI X3.274 standard for Rexx, so correct implementations al-
ways give the same results. An unusual feature of NetREXX arithmetic is the
numeric instruction: this may be used to select the arbitrary precision of cal-
culations. You may calculate to whatever precision that you wish (for financial
calculations, perhaps), limited only by available memory. For example:

numeric digits 50
say 1/7

which would display

0.14285714285714285714285714285714285714285714285714

4

The numeric precision can be set for an entire program, or be adjusted at will
within the program. The numeric instruction can also be used to select the
notation (scientific or engineering) used for numbers in exponential format.
NetREXX also provides simple access to the native binary arithmetic of comput-
ers. Using binary arithmetic offers many opportunities for errors, but is useful
when performance is paramount. You select binary arithmetic by adding the in-
struction:

options binary

at the top of a NetREXX program. The language processor will then use binary
arithmetic (see page 14) instead ofNetREXX decimal arithmetic for calculations,
if it can, throughout the program.

1.5 Doing things with strings

A character string is the fundamental datatype of NetREXX, and so, as youmight
expect, NetREXX provides many useful routines for manipulating strings. These
are based on the functions of Rexx, but use a syntax that is more like Java or
other similar languages:

phrase='Now is the time for a party'
say phrase.word(7).pos('r')

The second line here can be read from left to right as:

take the variable phrase, find the seventh word, and then find the position of the first “r” in that
word.

This would display “3” in this case, because “r” is the third character in “party”.
(In Rexx, the second line above would have been written using nested function
calls:

say pos('r', word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack
from right to left to work out exactly what’s going on.)
In theNetREXX syntax, at each point in the sequence of operations some routine
is acting on the result of what has gone before. These routines are calledmeth-
ods, to make the distinction from functions (which act in isolation). NetREXX
provides (as methods) most of the functions that were evolved for Rexx, includ-
ing:

. changestr (change all occurrences of a substring to another). copies (make multiple copies of a string). lastpos (find rightmost occurrence). left and right (return leftmost/rightmost character(s)). pos and wordpos (find the position of string or a word in a string). reverse (swap end-to-end). space (pad between words with fixed spacing)

5

. strip (remove leading and/or trailing white space). verify (check the contents of a string for selected characters). word, wordindex, wordlength, and words (work with words).

These and the others like them, and the parsing described in the next section,
make it especially easy to process text with NetREXX.

1.6 Parsing strings

The previous section described some of the string-handling facilities available;
NetREXX also provides string parsing, which is an easy way of breaking up
strings of characters using simple pattern matching.
A parse instruction first specifies the string to be parsed. This can be any term,
but is often taken simply from a variable. The term is followed by a template
which describes how the string is to be split up, and where the pieces are to be
put.

1.6.1 Parsing into words

The simplest form of parsing template consists of a list of variable names. The
string being parsed is split up into words (sequences of characters separated by
blanks), and each word from the string is assigned (copied) to the next variable
in turn, from left to right. The final variable is treated specially in that it will
be assigned a copy of whatever is left of the original string and may therefore
contain several words. For example, in:
parse 'This is a sentence.' v1 v2 v3

the variable v1 would be assigned the value “This”, v2 would be assigned the
value “is”, and v3 would be assigned the value “a sentence.”.

1.6.2 Literal patterns

A literal string may be used in a template as a pattern to split up the string. For
example

parse 'To be, or not to be?' w1 ',' w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point;
each section is then treated in just the same way as the whole string was in the
previous example.
Thus, w1 would be set to “To be”, w2 and w3 would be assigned the values “or”
and “not”, and w4 would be assigned the remainder: “to be?”. Note that the pat-
tern itself is not assigned to any variable. The patternmay be specified as a vari-
able, by putting the variable name in parentheses. The following instructions:

comma=','
parse 'To be, or not to be?' w1 (comma) w2 w3 w4

6

therefore have the same effect as the previous example.

1.6.3 Positional patterns

The third kind of parsing mechanism is the numeric positional pattern. This
allows strings to be parsed using column positions.

1.7 Indexed strings

NetREXX provides indexed strings, adapted from the compound variables of
Rexx. Indexed strings form a powerful “associative lookup”, or dictionary,
mechanism which can be used with a convenient and simple syntax.
NetREXX string variables can be referred to simply by name, or also by their
name qualified by another string (the index). When an index is used, a value
associated with that index is either set:

fred=0 –– initial value
fred[3]='abc' –– indexed value

or retrieved:
say fred[3] –– would say "abc"

in the latter case, the simple (initial) value of the variable is returned if the index
has not been used to set a value. For example, the program:

bark='woof'
bark['pup']='yap'
bark['bulldog']='grrrrr'
say bark['pup'] bark['terrier'] bark['bulldog']

would display

yap woof grrrrr

Note that it is not necessary to use a number as the index; any expression may
be used inside the brackets; the resulting string is used as the index. Multiple
dimensions may be used, if required:

bark='woof'
bark['spaniel', 'brown']='ruff'
bark['bulldog']='grrrrr'
animal='dog'
say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

which would display

ruff woof grrrrr

Here’s a more complex example using indexed strings, a test program with a
function (called a static method in NetREXX) that removes all duplicate words
from a string of words:

7

/∗ justonetest.nrx –– test the justone function. ∗/
say justone('to be or not to be') /∗ simple testcase ∗/
exit
/∗ This removes duplicate words from a string, and ∗/
/∗ shows the use of a variable (HADWORD) which is ∗/
/∗ indexed by arbitrary data (words). ∗/
method justone(wordlist) static
hadword=0 /∗ show all possible words as new ∗/
outlist='' /∗ initialize the output list ∗/
loop while wordlist\='' /∗ loop while we have data ∗/
/∗ split WORDLIST into first word and residue ∗/
parse wordlist word wordlist
if hadword[word] then iterate /∗ loop if had word ∗/
hadword[word]=1 /∗ remember we have had this word ∗/
outlist=outlist word /∗ add word to output list ∗/
end

return outlist /∗ finally return the result ∗/

Running this program would display just the four words “to”, “be”, “or”, and
“not”.

1.8 Arrays

NetREXX also supports fixed-size arrays. These are an ordered set of items, in-
dexed by integers. To use an array, you first have to construct it; an individ-
ual item may then be selected by an index whose value must be in the range 0
through n–1, where n is the number of items in the array:

array=String[3] –– make an array of three Strings
array[0]='String one' –– set each array item
array[1]='Another string'
array[2]='foobar'
loop i=0 to 2 –– display the items
say array[i]
end

This example also shows NetREXX line comments; the sequence “––” (outside
of literal strings or “/*” comments) indicates that the remainder of the line is
not part of the program and is commentary.
NetREXX makes it easy to initialize arrays: a term which is a list of one or more
expressions, enclosed in brackets, defines an array. Each expression initializes
an element of the array. For example:
words=['Ogof', 'Ffynnon', 'Ddu']

would set words to refer to an array of three elements, each referring to a string.
So, for example, the instruction:
say words[1]

would then display

Ffynnon

8

1.9 Things that aren’t strings

In all the examples so far, the data being manipulated (numbers, words, and
so on) were expressed as a string of characters. Many things, however, can be
expressed more easily in some other way, so NetREXX allows variables to refer
to other collections of data, which are known as objects.
Objects are defined by a name that lets NetREXX determine the data and meth-
ods that are associated with the object. This name identifies the type of the ob-
ject, and is usually called the class of the object.
For example, an object of class Oblong might represent an oblong to be manip-
ulated and displayed. The oblong could be defined by two values: its width and
its height. These values are called the properties of the Oblong class.
Most methods associated with an object perform operations on the object; for
example a sizemethodmight be provided to change the size of anOblong object.
Other methods are used to construct objects (just as for arrays, an object must
be constructed before it can be used). In NetREXX and Java, these constructor
methods always have the same name as the class of object that they build (“Ob-
long”, in this case).
Here’s how an Oblong class might be written in NetREXX (by convention, this
would be written in a file called Oblong.nrx; implementations often expect the
name of the file to match the name of the class inside it):
/∗ Oblong.nrx -- simple oblong class ∗/
class Oblong

width -- size (X dimension)
height -- size (Y dimension)

/∗ Constructor method to make a new oblong ∗/
method Oblong(new_width, new_height)
-- when we get here, a new (uninitialized) object has been
-- created. Copy the parameters we have been given to the
-- four properties of the object:
width=new_width; height=new_height

/∗ Change the size of a Oblong ∗/
method size(new_width, new_height) returns Oblong
width=new_width; height=new_height
return this -- return the resized object

/∗ Change the size of a Oblong, relatively ∗/
method relsize(rel_width, rel_height) returns Oblong
width=width+rel_width; height=height+rel_height
return this

/∗ 'Print' what we know about the oblong ∗/
method print()
say 'Oblong' width 'x' height

To summarize:

1. A class is started by the class instruction, which names the class.

9

2. The class instruction is followed by a list of the properties of the object.
These can be assigned initial values, if required.

3. The properties are followed by the methods of the object. Each method
is introduced by amethod instruction which names the method and de-
scribes the arguments that must be supplied to the method. The body of
the method is ended by the next method instruction (or by the end of the
file).

The Oblong.nrxfile is compiled just like any otherNetREXXprogram, and should
create a class file called Oblong.class. Here’s a program to try out the Oblong
class:
/∗ tryOblong.nrx -- try the Oblong class ∗/
first=Oblong(5,3) -- make an oblong
first.print -- show it
first.relsize(1,1).print -- enlarge and print again
second=Oblong(1,2) -- make another oblong
second.print -- and print it

When tryOblong.nrx is compiled, you’ll notice (if your compiler makes a cross-
reference listing available) that the variables first and second have type Oblong.
These variables refer to Oblongs, just as the variables in earlier examples re-
ferred to NetREXX strings.
Once a variable has been assigned a type, it can only refer to objects of that type.
This helps avoid errors where a variable refers to an object that it wasn’t meant
to.

1.9.1 Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are
in fact classes (you may have noticed that compiling them with the reference
implementation creates xxx.classfiles, where xxx is the nameof the source file).
The environment underlying the implementation will allow a class to run as a
stand-alone application if it has a staticmethod called mainwhich takes an array
of strings as its argument.
If necessary (that is, if there is no class instruction) NetREXX automatically adds
the necessary class and method instructions for a stand-alone application, and
also an instruction to convert the array of strings (each of which holds one word
from the command string) to a single NetREXX string.
The automatic additions can also be included explicitly; the “toast” example
could therefore have been written:

/∗ This wishes you the best of health. ∗/
class toast
method main(argwords=String[]) static
arg=Rexx(argwords)
say 'Cheers!'

though in this program the argument string, arg, is not used.

10

1.10 Extending classes

It’s common, when dealing with objects, to take an existing class and extend it.
One way to do this is to modify the source code of the original class – but this
isn’t always available, and with many different people modifying a class, classes
could rapidly get overcomplicated.
Languages that deal with objects, like NetREXX, therefore allow new classes of
objects to be set up which are derived from existing classes. For example, if you
wanted a different kind of Oblong in which the Oblong had a new property that
would be usedwhen printing theOblong as a rectangle, youmight define it thus:

/∗ charOblong.nrx -- an oblong class with character ∗/
class charOblong extends Oblong
printchar -- the character for display
/∗ Constructor to make a new oblong with character ∗/
method charOblong(newwidth, newheight, newprintchar)
super(newwidth, newheight) -- make an oblong
printchar=newprintchar -- and set the character

/∗ 'Print' the oblong ∗/
method print
loop for super.height
say printchar.copies(super.width)
end

There are several things worth noting about this example:

1. The “extends Oblong” on the class instruction means that this class is an
extension of the Oblong class. The properties and methods of the Oblong
class are inherited by this class (that is, appear as though they were part
of this class). Another common way of saying this is that “charOblong” is a
subclass of “Oblong” (and “Oblong” is the superclass of “charOblong”).

2. This class adds the printchar property to the properties already defined for
Oblong.

3. The constructor for this class takes a width and height (just like Oblong)
and adds a third argument to specify a print character. It first invokes the
constructor of its superclass (Oblong) to build an Oblong, and finally sets
the printchar for the new object.

4. The new charOblong object also prints differently, as a rectangle of charac-
ters, according to its dimension. The printmethod (as it has the samename
and arguments – none – as that of the superclass) replaces (overrides) the
print’method of Oblong.

5. The othermethods of Oblong are not overridden, and therefore can be used
on charOblong objects.

The charOblong.nrx file is compiled just like Oblong.nrx was, and should create
a file called charOblong.class.
Here’s a program to try it out

/∗ trycharOblong.nrx -- try the charOblong class ∗/
first=charOblong(5,3,'#') -- make an oblong
first.print -- show it

11

first.relsize(1,1).print -- enlarge and print again
second=charOblong(1,2,'∗') -- make another oblong
second.print -- and print it

This should create the two charOblong objects, and print them out in a simple
“character graphics” form. Note the use of the method relsize from Oblong to
resize the charOblong object.

1.10.1 Optional arguments

All methods in NetREXX may have optional arguments (omitted from the right)
if desired. For an argument to be optional, you must supply a default value. For
example, if the charOblong constructorwas to have a default value for printchar,
its method instruction could have been written
method charOblong(newwidth, newheight, newprintchar='X')

which indicates that if no third argument is supplied then ’X’ should be used.
A program creating a charOblong could then simply write:

first=charOblong(5,3) -- make an oblong

which would have exactly the same effect as if ’X’ were specified as the third
argument.

1.11 Tracing

NetREXX tracing is defined as part of the language. The flow of execution of pro-
grams may be traced, and this trace can be viewed as it occurs (or captured in
a file). The trace can show each clause as it is executed, and optionally show
the results of expressions, etc. For example, the trace results in the program
“trace1.nrx”:

trace results
number=1/7
parse number before '.' after
say after'.'before

would result in:

––– trace1.nrx
2 *=* number=1/7
>v> number ”0.142857143”

3 *=* parse number before ’.’ after
>v> before ”0”
>v> after ”142857143”

4 *=* say after’.’before
>>> ”142857143.0”

142857143.0

12

where the linemarkedwith “–––” indicates the context of the trace, linesmarked
with “*=*” are the instructions in the program, lines with “>v>” show results as-
signed to local variables, and lines with “»>” show results of unnamed expres-
sions.
Further, trace methods lets you trace the use of all methods in a class, along
with the values of the arguments passed to each method. Here’s the result
of adding trace methods to the Oblong class shown earlier and then running
tryOblong:

––– Oblong.nrx
8 *=* method Oblong(newwidth, newheight)
>a> newwidth ”5”
>a> newheight ”3”

26 *=* method print
Oblong 5 x 3
20 *=* method relsize(relwidth, relheight)–

21 *–*
>a> relwidth ”1”
>a> relheight ”1”

26 *=* method print
Oblong 6 x 4
returns Oblong

10 *=* method Oblong(newwidth, newheight)
>a> newwidth ”1”
>a> newheight ”2”

26 *=* method print
Oblong 1 x 2

where lines with “>a>” show the names and values of the arguments.
It is often useful to be able to find out when (and where) a variable’s value is
changed. The trace var instruction does just that; it adds names to or removes
names from a list of monitored variables. If the name of a variable in the cur-
rent class or method is in the list, then trace results is turned on for any as-
signment, loop, or parse instruction that assigns a new value to the named
variable.
Variable names to be added to the list are specified by listing them after the var
keyword. Any namemay be optionally prefixed by a – sign., which indicates that
the variable is to be removed from the list.
For example, the program “trace2.nrx”:

trace var a b -- now variables a and b will be traced
a=3
b=4
c=5
trace var –b c -- now variables a and c will be traced
a=a+1
b=b+1
c=c+1
say a b c

13

would result in:

--- trace2.nrx
3 *=* a=3
>v> a ”3”

4 *=* b=4
>v> b ”4”

8 *=* a=a+1
>v> a ”4”

10 *=* c=c+1
>v> c ”6”

4 5 6

1.12 Binary types and conversions

Most programming environments support the notion of fixed-precision “prim-
itive” binary types, which correspond closely to the binary operations usually
available at the hardware level in computers. For the reference implementation,
these types are:

. byte, short, int, and long – signed integers that will fit in 8, 16, 32, or 64
bits respectively. float and double – signed floating point numbers that will fit in 32 or 64
bits respectively.. char – an unsigned 16-bit quantity, holding a Unicode character. boolean – a 1-bit logical value, representing 0 or 1 (“false” or “true”).

Objects of these types are handled specially by the implementation “under the
covers” in order to achieve maximum efficiency; in particular, they cannot be
constructed like other objects – their value is held directly. This distinction
rarely matters to the NetREXX programmer: in the case of string literals an ob-
ject is constructed automatically; in the case of an int literal, an object is not
constructed.
Further, NetREXX automatically allows the conversion between the various
forms of character strings in implementations3 and the primitive types. The
“golden rule” that is followed by NetREXX is that any automatic conversion
which is applied must not lose information: either it can be determined before
execution that the conversion is safe (as in int to String) or it will be detected
at execution time if the conversion fails (as in String to int).
The automatic conversions greatly simplify the writing of programs; the exact
type of numeric and string-like method arguments rarely needs to be a concern
of the programmer. For certain applications where early checking or perfor-
mance override other considerations, the reference implementation of NetREXX
provides options for different treatment of the primitive types:

3In the reference implementation, these are String, char, char[] (an array of characters), and the NetREXX string
type, Rexx.

14

1. options strictassign – ensures exact type matching for all assignments.
No conversions (including those from shorter integers to longer ones) are
applied. This option provides stricter type-checking than most other lan-
guages, and ensures that all types are an exact match.

2. options binary – uses implementation-dependent fixed precision arith-
metic on binary types (also, literal numbers, for example, will be treated as
binary, and local variables will be given “native” types such as int or String,
where possible).

Binary arithmetic currently gives better performance than NetREXX decimal
arithmetic, but places the burden of avoiding overflows and loss of information
on the programmer.
The options instruction (which may list more than one option) is placed before
the first class instruction in a file; the binary keyword may also be used on
a class ormethod instruction, to allow an individual class or method to use
binary arithmetic.

1.12.1 Explicit type assignment

You may explicitly assign a type to an expression or variable:
i=int 3000000 -- 'i' is an 'int' with value 3000000
j=int 4000000 -- 'j' is an 'int' with value 4000000
k=int -- 'k' is an 'int', with no initial value
say i∗j -- multiply and display the result
k=i∗j -- multiply and assign result to 'k'

This example also illustrates an important difference between options nobi-
nary and options binary. With the former (the default) the say instruction
would display the result “1.20000000E+13” and a conversion overflow would be
reported when the same expression is assigned to the variable k.
With options binary, binary arithmetic would be used for themultiplications,
and so no error would be detected; the say would display “–138625024” and the
variable k takes the incorrect result.

1.12.2 Binary types in practice

In practice, explicit type assignment is only occasionally needed in NetREXX.
Those conversions that are necessary for using existing classes (or those that
use options binary) are generally automatic. For example, here is an Applet
for use by Java-enabled browsers:

/∗ A simple graphics Applet ∗/
class Rainbow extends Applet
method paint(g=Graphics) -- called to repaint window
maxx=size.–width1
maxy=size.–height1
loop y=0 to maxy
col=Color.getHSBColor(y/maxy, 1, 1) -- new colour
g.setColor(col) -- set it

15

g.drawLine(0, y, maxx, y) -- fill slice
end y

In this example, the variable col will have type Color, and the three arguments
to the method getHSBColor will all automatically be converted to type float. As
no overflows are possible in this example, options binarymay be added to the
top of the program with no other changes being necessary.

1.13 Exception and error handling

NetREXX does not have a goto instruction, but a signal instruction is provided
for abnormal transfer of control, such as when something unusual occurs. Using
signal raises an exception; all control instructions are then “unwound” until
the exception is caught by a control instruction that specifies a suitable catch
instruction for handling the exception.
Exceptions are also raised when various errors occur, such as attempting to di-
vide a number by zero. For example:

say 'Please enter a number:'
number=ask
do
say 'The reciprocal of' number 'is:' 1/number

catch Exception
say 'Sorry, could not divide "'number'" into 1'
say 'Please try again.'

end

Here, the catch instruction will catch any exception that is raised when the di-
vision is attempted (conversion error, divide by zero, etc.), and any instructions
that follow it are then executed. If no exception is raised, the catch instruction
(and any instructions that follow it) are ignored.
Any of the control instructions that end with end (do, loop, or select) may be
modified with one or more catch instructions to handle exceptions.

1.14 Summary and Information Sources

TheNetREXX language, as you will have seen, allows the writing of programs for
the Java environment with a minimum of overhead and “boilerplate syntax”;
using NetREXX for writing Java classes could increase your productivity by 30%
or more. Further, by simplifying the variety of numeric and string types of Java
down to a single class that follows the rules of Rexx strings, programming is
greatly simplified. Where necessary, however, full access to all Java types and
classes is available.
Other examples are available, including both stand-alone applications and
samples of applets for Java-enabled browsers (for example, an applet that
plays an audio clip, and another that displays the time in English). You can
find these from the NetREXX web pages, at http://www.netrexx.org. Also at

16

http://www.netrexx.org

that location, you’ll find the NetREXX language specification and other infor-
mation, and downloadable packages containing the NetREXX software and
documentation. There is a large selection of NetREXX examples available at
http://www.rosettacode.org. The software should run on any platform that
has a Java Virtual Machine (JVM) available.

17

http://www.rosettacode.org

2

Requirements

NetREXX 4.01-GA runs on a wide variety of hardware and operating systems;
all releases are tested on (non-exhaustive):

1. Windows Desktop and Server editions, with OpenJDK, Oracle and IBM
JVMs, GraalVM, Amazon Corretto, Azul ZuluJ OpenJDK

2. Linux, with OpenJDK, Oracle and IBM JVMs, GraalVM, Amazon Coretto,
Azul ZuluJ OpenJDK, including Linux on Z.

3. macOS with OpenJDK, Oracle JVM, GraalVM and Amazon Corretto
4. Android on ARM hardware with Dalvik virtual machine
5. z/OS, Linux on Z (tested on RHEL and SUSE), with IBM JVM, on Z Arch
(IBMMainframe).

6. The Raspberry Pi, using Raspbian Linux and its included JDK, or Open-
JDK, or Ubuntu Linux for aarch64.

NetREXX runs equally well on 32- or 64-bit JVMs. As the translator is a com-
mand line tool, no graphics configuration is required, and headless operation is
supported. Care has been taken to keep the NetREXX runtime small.
The class file format, however, of the current release distribution, is 51.0 cor-
responding to a minimal JVM level of 1.7.; for older formats, you can build
NetREXX yourself from source or request assistance from the development
team4 for a special build.

Since NetREXX 3, NetREXX requires only a JRE5 for program development,
where previously a Java SDK6 was required. For serious development purposes
a Java SDK is recommended, as the tools found therein might assist the devel-
opment process.

4see the NetRexx project at SourceForge.net

18

3

Installation

This chapter of the document tells you how to unpack, install, and test the
NetREXX translator package. This will install documentation, samples, and ex-
ecutables. It will first state some generic steps that are sufficient for most users.
The appendices contain very specific instructions for a range of platforms that
NetREXX is used on. Note that to run any of the samples, or use the NetREXX
translator, you must have already installed the Java runtime (and toolkit, if you
want to compile NetREXX programs using the default compiler). The NetREXX
samples and translator, version 4.01-GA, are guaranteed to run on Java ver-
sion 7 or later; the programs using the NetREXXR.jar runtime library will run on
earlier versions of many JVM’s.7 For ease of development and the availability of
additional Java tools, a Java SDK can be installed, but NetREXX programs can
be interpreted or compiled on a Java JRE installation8. By default the built-in
(same compiler classes as javac uses) compiler of the Java SDK is used. You can
test whether Java is installed, and its version, by trying the following command
at a command prompt:

java –version

which should display a response similar to this:

openjdk version ”1.8.0_242”
OpenJDK Runtime Environment (build 1.8.0_242-b06)
OpenJDK 64-Bit Server VM GraalVM CE 20.0.0 (build 25.242-b06-jvmci

-20.0-b02, mixed mode)

For more information on Java installation, see the Oracle Java web page9 – or
other suppliers of Java toolkits.

3.1 Unpacking the NetR package

The NetREXX package is shipped as a collection of files compressed into the file
NetREXX<version>.zip. Most modern operating environments can uncompress
a .zip package by doubleclicking.

7For earlier versions of Java, NetREXX 2.05 is available from the NetREXX.org website.
8See chapter 5
9at http://www.javasoft.com

19

http://www.javasoft.com

3.1.1 Unpacking the NetR .zip file

An unzip command is included in most Linux distributions, and Mac OSX. You
can also use the jar command which comes with all Java development kits, with
the options xvf. Choose where you want the NetREXX directory tree to reside,
and unpack the zip file in the directory which will be the parent of the NetREXX
tree. Here are some tips: The syntax for unzipping NetRexx4.01-GA.zip is sim-
ply

unzip NetRexx4.01-GA.zip

which should create the files and directory structure directly.

. WinZip: all versions may be used. Linux unzip: use the syntax: unzip –a NetRexx4.01-GA.zip. The “–a” flag
will automatically convert text files to Unix format if necessary. jar: The syntax for unzipping the package is
jar xvf NetRexx4.01-GA.zip

which should create the files and directory structure directly. The “x” indicates
that the contents should be extracted, and the “f” indicates that the zip file name
is specified, the “v” is for verbose. Note that the extension (.zip) is required.
After unpacking, the following directories should have been created:

3.2 The NetR packages

In the lib subdirectory, there are three java archive files (jars), which are called:

NetR F.jar The translator (and runtime) package including the ecj10 java
compiler

NetR C.jar The translator (and runtime) package without java compiler
ecj-I20201218-1800-NRX.jar The eclipse java compiler package

The runlib directory contains one java archive:

NetR R.jar Aminimal package including only the runtimeNetREXX classes
- for distribution with NetREXX programs

It is advised to start with the NetREXXF.jar archive package. This can be used
for your first NetREXX activities in a way that is independent of the Java class-
path, or the Java installation - a development installation (JDK) or just the java
runtime (JRE). This enables you to interpret, or compile NetREXX programs to
.class files. The NetREXXC.jar package is used by experienced NetREXX users; it
requires a correct setting of the classpath environment variable (explicitly, or
implicitly by adding it to the JVM standard extension directory) to find the java
10Eclipse Compiler for Java

20

compiler (either the JDK included javac classes or the included eclipse com-
piler) - on a JDK or JRE installation. The NetREXXR.jar contains only the run-
time of the NetREXX language. It can be added to compiled NetREXX applica-
tions if a small footprint is required. The following paragraph discusses getting
the compiler to translate your first program using the NetREXXF.jar - after that
the process of adding the translator to your environment is shown, what we will
call ’installing’ here. There is no requirement for a ’setup’ type of install, and
when you can execute Java on your system, there is no need to be ’Administra-
tor’ or ’root’ on your system - NetREXX runs fine from your home directory.

3.3 First steps with NetR

1. Verify the working of java on your systemwith the command: java -version
If this does not work, obtain a version at http://java.com and install it.

2. Create a file named hello.nrx in the directory that contains NetRexxF.jar,
that contains the line:

say ’hello, netrexx world!’

You can copy this file from the ../bin directory.
3. For Windows environments, add the bin directory to your PATH environ-
ment variable. The nrc.bat command takes care of adding the NetRexxF.jar
library to your CLASSPATHenvironment variable, so you can just runwith:

nrc -exec hello

To compile to a java .class file, leave out the -exec option. If this works,
you can skip the other steps (or read on, to get a feel for the working of the
CLASSPATH environment).

4. In this directory, verify the working of the interpreter with:

java -jar NetRexxF.jar -exec hello

5. Verify the creating of a .class file using the compiler with:

java -jar NetRexxF.jar hello

This should create hello.class, to be executed with the command:

java -cp NetRexxF.jar:. hello

(on windows, the colon should be a semicolon)

The -jar directive tells the JVM to ignore the set classpath and to start a method
that is indicated in the jar metadata.This method is, for the NetRexxF.jar:

java org.netrexx.process.NetRexxC

just as shown in 3.7 on page 24. Now that you have seen that it works, you can
use this method of execution11, or proceed with installing a more flexible way of
using NetRexx.

11Taking into account that you will have to add additional entries to the -jar argument for all but the most trivial
applications.

21

http://java.com

When a class calls another class that is located in the same directory, we need
to add this directory to the classpath. For example, if we want to compile the
charOblong.nrx example frompage 11, which extends theOblong class, we need
to invoke it as:

java -jar NetRexxF.jar -cp NetRexxF.jar;. charOblong.nrx

This can be done in a more straightforward way, by installing the NetREXXC.jar
on the classpath and using the provided nrc script; this is the subject of the next
section.

3.4 Installing the NetR Translator

The NetREXX package includes the NetREXX translator – a Java application
which can be used for compiling, interpreting, or syntax-checkingNetREXX pro-
grams. The procedure for installation is as follows12:

1. Make the translator visible to the Java Virtual Machine (JVM) - either:. Add the full path and filename of theNetREXX/lib/NetREXXC.jar to the
CLASSPATH environment variable for your operating system.13. Or (deprecated): Copy thefileNetREXX/lib/NetREXXC.jar to the jre/lib/ext
directory in the Java installation tree. The JVMwill automatically find
it there and make it available14.

2. Copy all the files in the NetREXX/bin directory to a directory in your PATH.
This is not essential, but makes shorthand scripts and a test case available.

3. Make the file [...]/lib/tools.jar (which contains the javac compiler) in the
Java tree visible to the JVM. You can do this either by adding its path and
filename to the CLASSPATH environment variable, or by moving it to the
jre/lib/ext directory in the Java tree. This file sometime goes under differ-
ent names, that will be mentioned in the platform-specific appendices.

3.5 Installing just the NetR Runtime

If you only want to run NetREXX programs and do not wish to compile or inter-
pret them, or if you would like to use the NetREXX string (Rexx) classes from
other languages, you can install just the NetREXX runtime classes.
To do this, follow the appropriate instructions for installing the compiler, but
use the NetREXXR.jar instead of NetREXXC.jar. The NetREXXR.jar file can be
found in the NetR /runlib directory.
You do not need to use or copy the executables in the NetR /bin directory.
12For Windows operating systems, forward slashes are backslashes.
13if you have a NetREXXC.zip in your CLASSPATH from an earlier version of NetREXX, remove it (NetREXXC.jar

replaces NetREXXC.zip).
14 This has serious drawbacks, however: As soon as the Java version is updated, NetREXX applications may mysteri-

ously – due to the now obsolete path - fail. The contents of the extensions directory are unversioned. Running multiple
versions of Java and NetREXX for testing purposes, or with an application that included another version of NetREXX
will become very hard when this way of installing is chosen.

22

The NetREXX class files can then be referred to from Java or NetREXX programs
by importing the package netrexx.lang. For example, a string might be of class
netrexx.lang.Rexx.
For information on thenetrexx.lang.Rexx class and other classes in the runtime,
see the NetR Language Reference document.
note If you have already installed the NetREXX translator (NetREXXC.jar) then
you do not need to install NetREXXR.jar; the latter contains only the NetREXX
runtime classes, and these are already included in NetREXXC.jar.

3.6 Setting the CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH
to indicate a search path for Java classes. The Java Virtual Machine and the
NetREXX translator rely on the CLASSPATH value to find directories, zip files,
and jar files which may contain Java classes. The procedure for setting the
CLASSPATH environment variable depends on your operating system, and for
Unix versions, which shell you are using.

. For Linux, MacOSX and other Unix versions (BASH (bash), Korn (ksh), or
Bourne (sh) shell), use:

CLASSPATH=<newdir>:\$CLASSPATH
export CLASSPATH

. This should be placed in your /.bash_profile, /etc/profile, .login, or .pro-
file file, as appropriate. The environment changes can be made active by
running, for example,

. .bash_profile

in your home directory, when this location is where you made the changes.. For Linux, MacOSX and other Unix versions (C shell (csh and tcsh)), use:
setenv CLASSPATH <newdir>:\$CLASSPATH

These should be set in your .cshrc file (csh) or .tcshrc (tcsh). The rehash
command can be used to activate these changes in the environment. If you
are unsure of how to do this, check the documentation you have for in-
stalling the Java toolkit.. For Windows operating systems, it is best to set the system wide environ-
ment, which is accessible using the Control Panel (a search for “environ-
ment” offsets the many attempts to relocate the exact dialog in successive
Windows Control Panel versions somewhat).. In Windows Powershell, limitations set by the administrator can deter-
mine which kind of scripting (using Powershell, not NetREXX) can be un-
dertaken. It might be difficult to modify the environment, and a difference
from scripting under the cmd.exe processor is that the environment is local
to an execution unit of a line. When changing the environment is allowed,
and a Powershell script is used to start the NetREXX translator, this is how
it can be done:

23

$env:path = ”c:\program files\java\jdk1.7.0_02\bin;\Users\rvj\bin;”
$env:classpath = ”.;\Users\rvj\lib\NetRexxC.jar”
. For pre 3.04 versions of NetREXX, when using an IBM JVM or JRE, make
sure that the file vm.jar is on the CLASSPATH - NetREXX will complain
about missing java.lang.Object when it is not. NetREXX 3.04 and later are
looking up the bootclasspath in a correct manner to avoid this problem.

In case of encountering difficulties in getting the classpath settings to work, the
following remarks can be helpful:

. Spaces in directory names are OK, but these paths must be surrounded by
double quotes in most environments, like Windows and Unix. Non-existing directories in classpaths can hurt - move the NetREXXC.jar
path to the beginning of classpath to eliminate the risk of non-existing di-
rectories.

3.7 Testing the NetR Installation

After installing NetREXX, it is recommended that you test that it is working cor-
rectly. If there are any problems, check the Troubleshooting section of this doc-
ument, chapter 13 on page 44.
Test the installation by typing in a file named ’hello.nrx’ containing the line:

say ’hello, world’

If you want to avoid typing in the file yourself,

./examples/ibm-historic/hello.nrx

has the original version of this program.

1. Enter the command
java org.netrexx.process.NetRexxC hello

Make sure that the userid that you are using for this has write authorization
for the directory that contains the source.15 This should run the NetREXX
compiler, which first translates the NetREXX program hello.nrx to the Java
program hello.java. It then invokes the default Java compiler (javac16), to
compile the file hello.java tomake the binary class file hello.class. The inter-
mediate hello.java file is then deleted, unless an error occurred or you asked
for it to be kept. You can also specify the source filename as ’hello.nrx’ - for
convenience, the translator will look for a file with a ’.nrx’ suffix if this is
not specified.

2. Enter the command
java hello

15For example, more modern versions of Windows do not allow non-admin userids to write into the program files
directories. In this case, make a directory under your home directory and copy the hello.nrx file there, and start the nrc
command from the same location. Running it from the examples directory will work.
16In fact, the class that the javac program also calls for compilation - but you can use other java compilers

24

This runs (interprets the bytecodes in) the hello.class file, which should dis-
play a simple greeting. On some systems, you may first have to add the di-
rectory that contains the hello.class file to the CLASSPATH setting so Java
can find it.

3. With the sample scripts provided (NetREXXC.cmd,NetREXXC.bat, orNetREXXC.sh),
or the equivalent in the scripting language of your choice, the steps above
can be combined into a simple single command such as:

NetRexxC.sh –run hello

This package also includes a trivial nrc, and matching nrc.cmd and nrc.bat
scripts, which simply pass on their arguments to NetREXXC; “nrc” is just a
shorter name that saves keystrokes, so for the last example you could type:

nrc –run hello

Note that scripts may be case-sensitive, and you will probably have to spell
the name of the program exactly as it appears in the filename. Also, to use
–run, you may need to omit the .nrx extension. You could also edit the ap-
propriate nrc.cmd, nrc.bat, or nrc script and add your favourite “default”
NetREXXC options there. For example, youmight want to add the –prompt
flag (described later) to save reloading the translator before every compi-
lation. If you do change a script, keep a backup copy so that if you install
a new version of the NetREXX package you won’t overwrite your changes.
On Unix versions, do not forget to make the scripts nrc and NetREXXC.sh
executable with the command chmod +x scriptname. Also onUnix versions,
it is better to use a command alias to start java classes; it avoids problems
with the splitting of strings on the command line. This is a workable set of
aliases to go into a .bash_profile script:
alias nrc=”java -cp $CLASSPATH org.netrexx.process.NetRexxC”
alias pipe=”java org.netrexx.njpipes.pipes.runner”
alias pipc=”java org.netrexx.njpipes.pipes.compiler”
alias nrs=”jrunscript -l netrexx -cp ~/lib/NetRexxC.jar”

25

4

Unicode

The JVMworks with Unicode as a string representation; for this reason the dis-
play of characters in alphabets other than the latin alphabet does not pose a
problem. To work with Unicode and internationalization in a straightforward
way, a combination of factors must be present. The operating system, your edi-
tor, shell and character set supportmust be compatiblewithUnicode. A set fonts
very seldom contains glyphs17 for all Unicode code points (values). Be certain to
save the program file as the right type; some editors can save as ASCII, UTF-8
and UTF-16. Some editors seem to support Unicode but have made mistakes
in the implementation. The NetREXX translator has a -utf8 option that makes
it accept this encoding in the source. This option is not necessary for the use
of Unicode in variables - this always works, it being the native encoding of the
JVM. The option is rather meant to enable specification of NetREXX syntax el-
ements in Unicode. This makes it possible to use Class names, Method names
and variable names composed of Unicode characters.
Some things to think of when using the -utf8 option:

. It is not the default.. The option -utf8 can be specified in the program source, but the value of
this option on the compiler command line must be equal to the value of the
program option. Here the rule that the last specified value for an option is
applicable, does not count. Whenmethod names are specified inUnicode, they need to be symbols and
not escaped Unicode characters. When Unicode is used in a Class name, the program file name must match
the class name.. A filename in Unicodemight still spell trouble when using it in conjunction
with version management software, sharing it using email or other usages
that are not limited to one file system and encoding method.

17This is a typographical term for character form

26

5

Running on a JRE-only environment

5.1 Eclipse Batch Compiler

NetREXX can be used on a JRE-only environment; it 3.01does not need an SDK
(JDK) when the included ecj (Eclipse Compiler for Java) jar file is available
on the classpath. This compiler is a part of the Eclipse JDT Core, which is the
Java infrastructure of the Java IDE. This is an incremental Java compiler. It is
based on technology evolved from the VisualAge for Java compiler and main-
tained by IBMand theEclipse Foundation. In particular, it allows one to run and
debug code which still contains unresolved errors. Future releases of NetREXX
might be exploringmore of the features of this compiler, like the extensive error
reporting. Currently, the ecj-I20201218-1800-NRX.jar level of the core com-
piler jar is delivered with NetREXX. There are other standalone Java compilers,
but after extensive research we have chosen to include this one. Using the –
nocompile and –keepasjava options it is always possible to substitute your own
compilers as subsequent stages in the build process.

5.2 The -ecj and -javac translator options

The NetREXX language processor is a translator package that either interprets
or executes NetREXX language source, and (by default) compiles the generated
Java language source code with the SDK-included javac compiler, or rather, the
Java compiler class sun.tools.javac.Main class that is delivered (in most imple-
mentations) in the tools.jar file, which is also called by the javac executable. An
option 3.04is introduced to make the language processor choose the ecj compiler.

nrc -ecj sourcefile.nrx

This directs the NetREXXC processor to use the ecj compiler to do the java com-
pile step instead of javac. This option can also be set to javac - which is still the
default when the option is not specified. The NetRexxC command script can, on
systems that do not have a javac compiler installed, be changed to state

java org.netrexx.process.NetRexxC -ecj $*

In this case all compiles started with the nrc command will use the Eclipse com-
piler. Only in case of Java compiler errors, when the compiler output will be
shown, will the difference be apparent. Installer support is planned to include
this property automatically when during NetREXX installation the javac com-

27

piler jar is not detected. When compiling using the -time option, the right com-
piler name will be indicated.

5.3 The netrexx_java environment variable

The NetREXXC compile scripts pass the environment variable netrexx_java to
the Java VM at start. The compiler selection can be placed in the environment
(in a slightly adapted and more historic form) and no change to the NetREXXC
script is required. In Windows for example:

set netrexx_java=-Dnrx.compile=ecj

5.4 Passing options to the Java Compiler

A scan will be performed for a suitable compiler when the preferred one is not
found.3.04
The Java system property ”nrx.compiler” can be used to provide options for the
Java compiler called by NetRexx. This property is set on starting the NetRexx
translator as in this example:

java -Dnrx.compiler=”-target 1.6” org.netrexx.process.NetRexxC myprogram

If the first option specified is ”javac” or ”ecj”, NetRexx will use that option to
prefer selection of a compiler although the ”-javac” and ”-ecj” translator options
will override it. Other options are passed to the Java compiler unchanged. If you
are using the Windows script ”nrc.bat” to compile programs, you can place the
system property in the Windows environment to make it automatic as in this
example:

set netrexx_java=-Dnrx.compiler=”ecj -source 1.6 -target 1.6”

The nrx.compiler property can also be set directly in Ant builds or via the Ant
project property ”ant.netrexxc.javacompiler”.

5.5 Interpreting

For completeness, it is confirmed here that interpretative execution also works
on a JRE-only system, anddoes not require a Java compiler. TheNetREXX trans-
lator produces the required bytecode and proxy classes without any need for a
Java compiler.

28

6

Using the prompt option

The prompt option may be be used for interactive invocation of the translator.
This requests that the processor not be ended after a file (or set of files) has been
processed. Instead, you will be prompted to enter a new request. This can either
repeat the process (perhaps if you have altered the source in the meantime),
specify a new set of files, or alter the processing options.
On the second and subsequent runs, the processor will re-use class information
loaded on the first run. Also, the classes of the processor itself (and the javac
compiler, if used) will not need to be verified and JIT-compiled again. These
savings allow extremely fast processing, as much as fifty times faster than the
first run for small programs.
When you specify -prompt on a NetREXXC command, the NetREXX program
(or programs) will initially be processed as usual, according to the other flags
specified. Once processing is complete, you will be prompted thus:

Enter new files and additional options, ’=’ to repeat, ’exit’ to end:

.
At this point, you may enter:

. One ormore file names (with or without additional flags): the previous pro-
cess, modified by any new flags, is repeated using the source file or files
specified. Files named previously are not included in the process (unless
they are named again in the new list of names).. Additional flags (without any new files): the previous process, modified by
the new flags, is repeated, on the same files as before. Note that flags are
accumulated; that is, flags are not reset to defaults between prompts.. The character = this simply repeats the previous process, on the same file
or files (which may have had their contents changed since the last process)
and using the same flags. This is especially useful when you simply wish to
re-compile (or re-interpret, see below) the same file or files after editing.. The word exit, which causes NetREXXC to cease execution without any
more prompts.. Nothing (just press Enter or the equivalent) – usage hints, including the
full list of possible options, etc., are displayed and you are then prompted
again.

29

7

Using the translator as an Interpreter

In addition to being used as a compiler, the translator also includes a true
NetREXX interpreter, allowing NetREXX programs to be run on the Java 2 (1.2)
platform without needing a compiler or generating .class files.
The startup time for running programs can therefore be significantly reduced as
no Java source code or compilation is needed, and also the interpreter can give
better runtime support (for example, exception tracebacks are localized to the
programs being interpreted, and the location of an exception will be identified
often to the nearest token in a term or expression).
Further, in a single run, a NetREXX program can be both interpreted and then
compiled. This shares the parsing between the two processes, so the .class file
is produced without the overhead of re-translating and re-checking the source.

7.0.1 Interpreting programs

The NetREXX interpreter is currently designed to be fully compatible with
NetREXX programs compiled conventionally. There are some minor restric-
tions (see section 12 on page 41), but in general any program that NetREXXC
can compilewithout error should run. In particular,multiple programs, threads,
event listeners, callbacks, and Minor (inner) classes are fully supported.
To use the interpreter, use the NetREXXC command as usual and specify either
of the following command options (flags):

-exec after parsing, execute (interpret) the program or programs by calling
the static main(String[]) method on the first class, with an empty array
of strings as the argument. (If there is no suitable main method an error
will be reported.)

-arg words... as for -exec, except that the remainder of the command argu-
ment string passed to NetREXXC will be passed on to the main method
as the array of argument strings, instead of being treated as file specifi-
cations or flags. Specifying -noarg is equivalent to specifying -exec; that
is, an empty array of argument strings will be passed to the main method
(and any remaining words in the command argument string are processed
normally).

When any of -exec, -arg, or -noarg is specified, NetREXXC will first parse and
check the programs listed on the command. If no error was found, it will then
run them by invoking the main method of the first class interpretively.
Before the run starts, a line similar to:

30

===== Exec: hello =====

will be displayed (you can stop this and other progress indicators being dis-
played by using the -verbose0 flag, as usual).

For example, to interpret the hello world program without compilation, the
command:

nrc hello -exec -nojava

can be used. If you are likely to want to re-interpret the program (for example,
after changing the source file) then also specify the -prompt flag, as described
above. This will give very much better performance on the second and subse-
quent interpretations.
Similarly, the command:

nrc hello -nojava -arg Hi Fred!

would invoke the program, passing the words Hi Fred! as the argument to the
program (youmight want to add the line say arg to the program to demonstrate
this).
You can also invoke the interpreter directly from another NetREXX or Java pro-
gram, as described in The NetREXX Programming Guide.

7.1 Interpreting – Hints and Tips

When using the translator as an interpreter, you may find these hints useful:

. If you can, use the -prompt command line option (see above). This will
allow very rapid re-interpretation of programs after changing their source.

. If you don’t want the programs to be compiled after interpretation, specify
the -nojava option, unless you want the Java source code to be generated
in any case (in which case specify -nocompile, which implies -keep).

. By default, NetREXXC runs fairly noisily (with a banner and logo display,
and progress of parsing being shown). To turn off these messages during
parsing (except error reports and warnings) use the -verbose0 flag.

. If you are watching NetREXX trace output while interpreting, it is often a
good idea to use the -trace1 flag. This directs trace output to the standard
output stream, which will ensure that trace output and other output (for
example, from say instructions) are synchronized.

. Use the NetREXX exit instruction (rather than the System.exit() method
call) to end windowing (AWT) applications which are to be interpreted.
This will allow the interpreter to correctly determine when the application
has ended.

31

7.2 Interpreting – Performance

The interpreter, in the current implementation, directly and efficiently inter-
prets NetREXX instructions. However, to assure the stability of the code, terms
and expressions within instructions are currently fully re-parsed and checked
each time they are executed. This has the effect of slowing the execution of terms
and expressions significantly; performance measurements on the initial release
are therefore unlikely to be representative of later versions that might be re-
leased in the future.
For example, at present a loop controlled using loop for 1000will be interpreted
around 50 times faster than a loop controlled by loop i=1 to 1000, even in a bi-
nary method, because the latter requires an expression evaluation each time
around the loop.

32

8

Installing on an IBMMainframe

8.0.1 EBCDIC Systems: z/OS, z/VM

Prerequisites for z/OS

To use NetREXX on z/OS you must have access to an OMVS prompt (z/OS Unix
Systems Services18 shell for 3270 terminals), or have access using ssh or telnet;
Java must be installed.
Access to the OMVS command can be regulated through a security profile, so
your userid must be in the right RACF, ACF2 or TOP SECRET class. You will
need a home directory specified in this OMVS class, and this directory needs to
be mounted, preferably as a permanent mount.
If this is arranged and working, you need to verify if there is a Java runtime
available. Test this with the command

java -version

Java 7, or more recent, is needed for NetREXX 4.01-GA.

Uploading the NetR translator jar

The NetREXX binaries are identical for all operating systems; the same Net-
RexxC.jar runs everywhere19. However, during installation it is important to
ensure that binary files are treated as binary files, whereas text files (such as
the accompanying HTML and sample files) need to be translated to the local
code page as required.
The simplest way to do this is to first install the package on a workstation, fol-
lowing the instructions above, then copy or FTP the files you need to the main-
frame. The files need to be placed in an HFS to be used by OMVS; FTP and sftp
can directly place the files in an HFS or ZFS home directory, while IND$FILE
can place them into a traditional data set.
Specifically:

. The NetRexxC.jar file should be copied as-is, that is, use FTP or other file
transfer with the BINARY option. Note that sftp defaults to binary, while
scp to z/OS translates ASCII to EBCDIC and is not usable for this purpose.

18IBM Manuals SA22-7801-12 “Unix System Services User’s Guide” and SA22-7802-12 “Unix System Services Ref-
erence”
19Thanks to Mark Cathcart and John Kearney for contributing the details to the original version of this section.

33

The CLASSPATH should be set to include this NetRexxC.jar file. When us-
ing IND$FILE as a file transfer mechanism to a traditional MVS data set,
make sure it is allocated as a load library with lrecl 0 and a large block-
size. A variable length record also works, for example, a dataset defined as
dsorg=ps, recfm=vb, lrecl=1250, blksize=12500 works without a prob-
lem.
. Other files (documentation, etc.) should be copied as Text (that is, they will
be translated from ASCII to EBCDIC). This can be done by specifying type
TEXTon the ftp command, or use theASCII CRLF option on the IND$FILE
command.

In general, files with extension .au, .class, .gif, .jar, or .zip are binary files; all
others are text files. You may opt to leave the additional files on a workstation,
the mainframe really only needs the .jar file, NetRexxC.jar (or NetRexxR.jar if
you are only planning to run already compiled classfiles). Setting the classpath
might look like this for a Java 1.6 installation on a recent z/OS:

JAVA_HOME=/opt/ibm/java-s390x-60
export JAVA_HOME
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar
CLASSPATH=$CLASSPATH:$JAVA_HOME/jre/lib/s390x/default/jclSC160/vm.jar
CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar
export CLASSPATH

For a Java 1.6.1 installation, the following settings were encountered:

JAVA_HOME=/usr/lpp/java/J6.0.1
export JAVA_HOME
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/s390/default/jclSC160/vm.jar
CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar
export CLASSPATH

For a 64 bits Java 1.7.0 installation, these settings work:

JAVA_HOME=/usr/lpp/java/J7.0_64
export JAVA_HOME
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/s390x/default/jclSC170/vm.jar
CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar
export CLASSPATH

Note that you are free to put the NetRexxC.jar archive in any location, as long as
the classpath correctly refers to it. The vm.jar has to be on the classpath because
otherwise Object.class will not be found by the NetREXXC translator.
The OCOPY command can be used under TSO to copy the uploaded NetRexxC.jar
to a path in an HFS dataset:

/* rexx */
”free fi(pathname)”

34

”free fi(sysut1)”
”alloc fi(pathname) path(’/u/[your userid]/lib/NetRexxC.jar’)”
”alloc fi(sysut1) dsn(’netrexx.new’)”
”ocopy indd(sysut1) outdd(pathname) binary”

This works when the NetRexxC.jar file already exists, if that is not the case, just
issue touch NetRexxC.jar in that directory, the copy command will overwrite
that empty file.
Be sure to add the -Xquickstart option to the java command in the nrc binary
file in your path, or add it as an alias.

java -Xquickstart org.netrexx.process.NetRexxC $*

because this will shorten the startup time required to a more or less acceptable
time.
When this is done, we can run some tests with it and see that everything works.
Edit a program source file with oedit, which works just like the ISPF/PDF ed-
itor and compile or interpret it like we do on other versions of Unix. NetREXX
programs can access HFS (and ZFS) files the same way it does onWindows and
Unix, and also network programming with TCP/IP works in the same way from
OMVS.
For a description how NetREXX can be used in a traditional MVS workload en-
vironment, with batch JCL and using VSAM and sequential data sets and PDS
directories, you are referred to the NetR Programming Guide).

A note on character sets

z/OS USS is an EBCDIC Unix version, do note that the -utf8 option does only
work when your source file actually is encoded in utf8.

8.0.2 Linux on Z

Installing on Linux on Z (sometimes referred to as z/Linux) is straightforward.
Make sure theNetRexxC.jar is copied untranslated to the z/Linux file systemus-
ing ftp, scp or some other file transfer technology, and take into account that the
IBM JVM has Object.class in the vm.jar archive. At the moment, if not installed
already, Java for z/Linux is a free download from the IBM website. With Linux
on Z versions that have a VNC server installed and available, Java Graphical
User Interfaces (GUI) can be used without installing X client software.

35

9

ARM ABI Remarks

For the next two chapters, it is relevant to know about a specific issue with ARM
processors, as used in both the Raspberry Pi and the Beaglebone Black, with re-
gard to the JVMdistribution that is used. ARMprocessors are available inmany
different configurations, and because of considerations of pricing and power re-
quirements, not all of these include hardware floating point units. The difference
between these is the reason of the existence of two Embedded Application Bi-
nary Interfaces or EABIs for ARM: soft float and VFP (Vector Floating Point).
Although there is forward compatibility between soft and hard float, there is
no backward compatibility. In the Linux community, releases built using these
EABI’s are called armel based distributions.
Unfortunately, VFPhas an inefficientway of passingfloating point values through
intermediate integer registers to the floating point registers where they can be
used. This has given rise to a third EABI, which is called armhf, also called hard
float. This architecture can be seen as the future, because the important Linux
distributions aremoving towards it. Depending on the release of your operating
system, your Raspberry Pi or Beaglebone Black’s software can be operating in
armel or armhf mode. The consequence of this is that the JVM implementation
must match the architecture, or it will not work.
The JVM that are installed using the package manager that is native to the op-
erating system will choose the right architecture. For the Oracle Java versions,
it is important to know that the released version 7 JVM is soft-float armel and
that there is currently a JVM 8 preview that is hard-float. The recommended
OS for the Raspberry Pi is Debian Wheezy “Raspbian”, which is hard float. The
Beaglebone Black comes with Ångstrom Linux, which is soft-float and cannot
run the Oracle Java 8 preview.
The easiest way to spot the architecture is to look for these components (armel
of armhf) in the package names when installing software. There is a way to de-
termine which EABI conventions were used, which is mentioned here for com-
pleteness: the command

readelf -A /proc/self/exe | grep Tag_ABI_VFP_args

returns:

Tag_ABI_VFP_args: VFP registers

when the OS distribution is armhf and nothing, when it is armel.

36

10

Installing and running on the
BeagleBone Black

10.0.1 Starting with an unmodified system

The following instructions assume a new system, running the default Ångstrom
Linux distribution. Since NetREXX is an alternative language for the JVM, you
must first have Java installed on the BeagleBone Black.

10.0.2 Install Java

. From the Ångstrom repository.
Login as root

opkg update
opkg install openjdk-6-jdk

If that fails (for one reason or another), install the pieces of Java step-by-
step:

opkg install openjdk-6-common
opkg install openjdk-6-java
opkg install openjdk-6-jre
opkg install openjdk-6-jdk
opkg install openjdk-6-vm-zero

And if that fails (for whatever reason), go directly to the repositories at
http://www.angstrom-distribution.org/repo/ and fetch the packages in-
dividually by direct URL, using the list above in order:

opkg install <URL>
. From Oracle
Download the JDK from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.htm. Ensure that:. You accept the license agreement, and. select the ”Linux ARM” version
As this is written, the file to download is http://download.oracle.com/
otn-pub/java/jdk/7u25-b15/jdk-7u25-linux-arm-sfp.tar.gz
Then, while logged in as root:. mkdir /usr/java. Move the downloaded file to /usr/java. tar zxvf jdk-7u25-linux-arm-sfp.tar.gz

37

http://www.angstrom-distribution.org/repo/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.htm
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.htm
http://download.oracle.com/otn-pub/java/jdk/7u25-b15/jdk-7u25-linux-arm-sfp.tar.gz
http://download.oracle.com/otn-pub/java/jdk/7u25-b15/jdk-7u25-linux-arm-sfp.tar.gz

. Delete the downloaded file (optional, but saves space)
Add /usr/java/jdk1.7.0_25/bin to the PATH:. Edit /etc/profile. Insert PATH=$PATH:/usr/bin/jdk1.7.0_25/bin
Somewhere between the existing PATH and the final export statements.

10.0.3 Install NetR

Download the NetREXX distribution

wget http://netrexx.org/files/ NetRexx4.01-GA.zip

Create or select a destination directory (like /usr/netrexx/), move the down-
loaded file there, and

unzip NetRexx4.01-GA.zip

Then simply follow the NetREXX recommendations to finalize the installation.

38

11

Installing and running on the
Raspberry Pi

11.0.1 RunningNetR in10minuteson theRaspberryLinux/ARM
system

This install guide is different, in the sense that it describes the entire setup of
the Raspberry Pi system, including NetREXX.

Linux on ARM

The Raspberry Pi is an inexpensive computer, containing an ARM architecture
CPU on a board the size of a credit card, which sells for $35. It boots from an SD
card, the kind that is used for digital cameras. In a few small steps you can be
up and running with NetREXX. Recent Raspbian distributions already contain
Java.

. Use an SD card of suitable size (and known brand)20, at least 2GB but 8 or
16 is advisable. Download the raspbian image from http://www.raspberrypi.org/downloads. Hook up an SD Card writer (the one in your digital camera probably also
works) to the USB port of your computer. While taking good care not to overwrite your harddisk, use dd or, on Win-
dows, Win32DiskManager to write the image to the SD card. This takes
a minute. Good instructions are at http://elinux.org/RPi_Easy_SD_Card_
Setup. Now unpack the Raspberry Pi, connect the hdmi to a tv or via an hdmi-
monitor cable to a monitor, connect a keyboard (mouse can be attached
later, if at all), and connect themini-usb adapter to the power socket. I used
a spare plug from an old phone. It boots and gives a lot of Unix messages.
The first boot is not very quick. Connect an ethernet cable to your router21.. You land in the raspi-config system. Resize the partitions to fill your SD
card. Change the password for the pi user, set the default locale, and enable
ssh. You can worry with the other options later.. Note the IP address that the system received from DHCP

20Not all cards work; the large brands do. SanDisk Ultra SDHC cards are verified to work.
21The entire installation can be done without connection a monitor if so desired. You can find the Raspberry on your

network by using nmap, or looking at your router interface. Be sure to re-enable ssh when running raspi-config.

39

http://www.raspberrypi.org/downloads
http://elinux.org/RPi_Easy_SD_Card_Setup
http://elinux.org/RPi_Easy_SD_Card_Setup

. Login from another system, for example using Putty (for Windows) or use
ssh pi@your.ip.add.ress (these are the numbers of an IP4 address). Use scp or ftp (binary mode) to transmit NetRexxC.jar or NetRexxF.jar to
the system, or install the whole NetREXX package. There is an unzip com-
mand available. Set path and classpath as indicated earlier, and run NetREXX. You have the
option to develop and compile on the Raspberry, or just upload class files
to it.

40

12

Current Restrictions

This chapter lists the restrictions for the current release. Please note that the
presence of an item in this section is not a commitment to remove a restriction
in some future update; NetREXX enhancements are dependent on on-going re-
search, your feedback, and available resources. You should treat this list as a
“wish-list” (and please send in your wishes, preferable as an RFE on the http:
//sourceforge.net/projects/netrexx website).

12.1 General restrictions

1. The translator requires that Java 7 or later be installed. It is tested up to
JDK 17ea.

2. Certain forward references (in particular, references to methods later in a
program from the argument list of an earlier method) are not handled by
the translator. For these, try reordering the methods.

12.2 Compiler restrictions

The following restrictions are due to the use of a translator for compiling, and
would probably only be lifted if a direct-to-bytecodes NetREXX compiler were
built. Externally-visible names (property, method, and class names) cannot be
Java reserved words (you probably want to avoid these anyway, as people who
have to write in Java cannot refer to them), and cannot start with “$0”.

1. There are various restrictions on naming and the contents of programs (the
first class namemustmatch the programname, etc.), required tomeet Java
rules.

2. The javac compiler requires that mutually-dependent source files be on the
CLASSPATH, so it can find the source files. NetREXXC does not have this
restriction, but when using javac for the final compilation you will need to
follow the convention described in the Compiling multiple programs and
using packages section (see page 23).

3. The symbols option (which requests that debugging information be added
to generated .class files) applies to all programs compiled together if any of
them specify that option.

4. Some binary floating point underflows may be treated as zero instead of
being trapped as errors.

41

http://sourceforge.net/projects/netrexx
http://sourceforge.net/projects/netrexx

5. When trace is used, side-effects of calls to this() and super() in constructors
may be seen before the method and method call instructions are traced –
this is because the Java language does not permit tracing instructions to be
added before the call to this() or super().

6. The results of expressions consisting of the single term “null” are not traced.
7. When aminor (inner) class is explicitly imported, its parent class or classes
must also be explicitly imported, or javac will report that the class cannot
be found.

12.3 Interpreter restrictions

Interpreting Java-based programs is complex, and is constrained by various se-
curity issues and the architecture of the Java Virtual Machine. As a result, the
following restrictions apply; these will not affect most uses of the interpreter.

1. Certain “built-in” Java classes22 are constrained by the JVM in that they
are assumed to be pre-loaded. An attempt to interpret them is allowed, but
will cause the later loading of any other classes to fail with a class cast ex-
ception. Interpreted classes have a stub which is loaded by a private class
loader. This means that they will usually not be visible to external (non-
interpreted) classes which attempt to find them explicitly using reflection,
Class.forName(), etc. Instead, these calls may find compiled versions of the
classes from the classpath. Therefore, to find the “live” classes being inter-
preted, use the NetREXXA interpreter API interface (described below).

2. An interpreter cannot completely emulate the actions taken by the Java
Virtual Machine as it closes down. Therefore, special rules are followed to
determine when an application is assumed to have ended when interpret-
ing (that is, when any of –exec, –arg, or –noarg is specified):

3. If the applicationbeing interpreted invokes the exitmethodof the java.lang.System
class, the run ends immediately (even if –prompt was specified). The call
cannot be interceptedby the interpreter, and is assumed to be an explicit re-
quest by the application to terminate the process and release all resources.
In other cases, NetREXXC has to decide when the application ends and
hence when to leave NetREXXC (or display the prompt, if –prompt was
specified). The following rules apply:
(a) If any of the programs being interpreted contains the NetREXX exit in-

struction and the application leaves extra user threads active after the
main method ends then NetREXXC will wait for an exit instruction to
be executed before assuming the application has ended and exiting (or
re-prompting). Otherwise (that is, there are no extra threads, or no
exit instruction was seen) the application is assumed to have ended
as soon as the main method returns and in this case the run ends (or
the prompt is shown) immediately. This rule allows a program such
as “hello world” to be run after a windowing application (which leaves
threads active)without a deadlockedwait. These rules normally “do the

22notably java.lang.Object, java.lang.String, and java.lang.Throwable

42

right thing”. Applications which create windowsmay, however, appear
to exit prematurely unless they use the NetREXX exit instruction to end
their execution, because of the last rule.

(b) Applications which include both thread creation and an exit instruc-
tion which is never executed will wait indefinitely and will need to be
interrupted by an external “break” request, or equivalent, just as they
would if run from compiled classes.

(c) Interpreting programs which set up their own security managers may
prevent correct operation of the interpreter.

43

13

Troubleshooting

Can’t find class org.netrexx.process.NetRexxC probablymeans that the
NetRexxC.jar file has not been specified in your CLASSPATH setting, or is
misspelled, or is in thewrong case, or (for Java 1.2 or later) is not in the Java
\lib\ext directory. Note that in the latter case there are two lib directories in
the Java tree; the correct one is in the Java RuntimeEnvironment directory
(jre). The Setting the CLASSPATH section contains information on setting
the CLASSPATH.

+++ Error: The class ’java.lang.Object’ cannot be found. You are running
with an IBM JVM or JRE. The java.lang.Object class is packaged in the file
vm.jar, which needs to be on your CLASSPATH

Can’t find class hello may mean that the directory with the hello.class file is
not in your CLASSPATH (youmay need to add a . (dot) to the CLASSPATH,
signifying the current directory), or either the filename or name of the class
(in the source) is spelledwrong (the java command is [very] case-sensitive).
Note that the name of the class must not include the .class extension.

Exception ... NoClassDefFoundError: sun/tools/javac/Main This in-
dicates that you did not add the Java tools to your CLASSPATH (hence Java
could not find the javac compiler). Your system might not have tools.jar:
use the -ecj option on the compile command, and use NetRexxF.jar.

Error opening the file ’hello.java’ [C:\Program Files(86) \javajdk1 7.0.05
jrebinhello.java (Access is denied)] - your userid needs write authorization
on the current directory. Please copy the source file to a writeable directory
and try again.

Extra blanks You have an extra blank or two in the CLASSPATH. Blanks
should only occur in the middle of directory names (and even then, you
probably need somedouble quotes around the SET commandor theCLASS-
PATH segment with the blank). The JVM is sensitive about this.

Permission Denied You are trying the NetRexxC.sh or nrc scripts under
Linux or other Unix system, and are getting a Permission denied mes-
sage. This probably means that you have not marked the scripts as being
executable. To do this, use the chmod command, for example: chmod 751
NetRexxC.sh.

No such file You are trying the NetRexxC.sh or nrc scripts under Linux or
other Unix system, and are getting a No such file or syntax error message
frombash. This probablymeans that you did not use the unzip -a command
to unpack the NetREXX package, so CRLF sequences in the scripts were not
converted to LF.

44

You have only the Java runtime installed, and not the toolkit. If the toolkit is in-
stalled, you should have a program called javac on your computer. You can
checkwhether javac is available andworking by issuing the javac command
at a command prompt; it should respond with usage information.

java.lang.OutOfMemoryError when running the compiler probablymeans
that the maximum heap size is not sufficient. The initial size depends on
your Java virtual machine; you can change it to (say) 128 MegaBytes by
setting the environment variable:
SET NETREXX_JAVA=-Xmx128M

TheNetRexxC.cmd and .bat files add the value of this environment variable
to the options passed to java.exe. If you’re not using these,modify your java
command or script appropriately.

Down-level Java You have a down-level version of Java installed. Java 7, or
more recent, is needed for NetREXX 4.01-GA. The level of the JVM can be
checked with the command:
java -version’

applet viewer needed Some of the samples must be viewed using the Java
toolkit applet-viewer or a Java-enabled browser. Please see the hypertext
pages describing these for detailed instructions. In general, if you see a
message from Java saying:
void main(String argv[]) is not defined

this means that the class cannot be run using just the java command; it
must be run from another Java program, probably as an applet.

45

46

Index

NetREXXR runtime classes, 22
Rexx, 10
arg, 10
case, 3
catch, 16
class, 9–11, 15
digits, 4
do, 3, 4, 16
else, 2, 3
end, 3, 4, 8, 11, 16
exit, 3, 8
extends, 11, 15
for, 11
if, 2–4, 8
iterate, 8
loop, 4, 8, 11, 15
method, 8–12, 15
numeric, 4
otherwise, 3
parse, 6, 8, 12
return, 8, 9
returns, 9
say, 1–5, 7–13, 15, 16
select, 3
set, 8
static, 8, 10
super, 11
then, 2–4, 8
this, 9
to, 4, 8, 15
trace, 12, 13
when, 3
while, 8

arg option, 30

BeagleBone Black, 37

compiling,interactive, 29

EBCDIC installations, 33
exec option, 30

flag,arg, 30
flag,exec, 30
flag,nocompile, 31
flag,nojava, 31
flag,prompt, 29

flag,trace1, 31
flag,verbose, 31

installation,BeagleBone Black, 37
installation,EBCDIC systems, 33
installation,Raspberri Pi, 39
installation,runtime only, 22
interactive translation, 29
interactive translation,exiting, 29
interactive translation,repeating, 29
interpreting,NetRexx programs, 30
interpreting,hints and tips, 31
interpreting,performance, 32

jar command, used for unzipping, 20

NetRexx package, 20
netrexx_java (environment variable, 28
NetRexxF.jar, 20
nocompile option, 31
nojava option, 31

option,arg, 30
option,exec, 30
option,nocompile, 31
option,nojava, 31
option,prompt, 29
option,trace1, 31
option,verbose, 31

package/NetRexx, 20
performance, while interpreting, 32
prompt option, 29

Raspberry Pi, 39
runtime,installation, 22

trace1 option, 31

unpacking, 20
using the translator,as an Interpreter, 30

verbose option, 31

zip files, unpacking, 20

47

9 789081 909020

ISBN 978-90-819090-2-0

48

	The NetRexx Programming Series
	Introduction
	A Quick Tour of NetRexx
	NetRexx programs
	Expressions and variables
	Control instructions
	NetRexx arithmetic
	Doing things with strings
	Parsing strings
	Indexed strings
	Arrays
	Things that aren’t strings
	Extending classes
	Tracing
	Binary types and conversions
	Exception and error handling
	Summary and Information Sources

	Requirements
	Installation
	Unpacking the NetRexx package
	The NetRexx packages
	First steps with NetRexx
	Installing the NetRexx Translator
	Installing just the NetRexx Runtime
	Setting the CLASSPATH
	Testing the NetRexx Installation

	Unicode
	Running on a JRE-only environment
	Eclipse Batch Compiler
	The -ecj and -javac translator options
	The netrexx_java environment variable
	Passing options to the Java Compiler
	Interpreting

	Using the prompt option
	Using the translator as an Interpreter
	Interpreting – Hints and Tips
	Interpreting – Performance

	Installing on an IBM Mainframe
	ARM ABI Remarks
	Installing and running on the BeagleBone Black
	Installing and running on the Raspberry Pi
	Current Restrictions
	General restrictions
	Compiler restrictions
	Interpreter restrictions

	Troubleshooting
	Index

