
NetRexx QuickStart
Guide
Mike Cowlishaw and RexxLA

Version 3.02 of June 25, 2013

THEREXX LANGUAGEASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-2-0

Publication Data
c⃝Copyright e Rexx Language Association, 2011-2013
All original material in this publication is published under the Creative Commons - Share Alike 3.0 License as
stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

e responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14, 1074
HR Amsterdam, a registered company governed by the laws of the Kingdom of e Netherlands.

is edition is registered under ISBN 978-90-819090-2-0

9 789081 909020

ISBN 978-90-819090-2-0

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

eNetRexx Programming Series i

Typographical conventions iii

Introduction v

Requirements vii

1 Auick Tour of NetRexx 1
1.1 NetRexx programs 1
1.2 Expressions and variables 2
1.3 Control instructions 3
1.4 NetRexx arithmetic 4
1.5 Doing things with strings 4
1.6 Parsing strings 5
1.7 Indexed strings 6
1.8 Arrays 7
1.9 ings that aren’t strings 8
1.10 Extending classes 10
1.11 Tracing 11
1.12 Binary types and conversions 13
1.13 Exception and error handling 14
1.14 Summary and Information Sources 15

2 Installation 17
2.1 Unpacking the NetRexx package 17
2.2 e NetRexx packages 19
2.3 First steps with NetRexx 20
2.4 Installing the NetRexx Translator 20
2.5 Installing just the NetRexx Runtime 21
2.6 Setting the CLASSPATH 21
2.7 Testing the NetRexx Installation 22

3 Unicode 25

4 Running on a JRE-only environment 27
4.1 Eclipse Batch Compiler 27
4.2 e nrx.compiler property 27
4.3 e netrexx java environment variable 28
4.4 Interpreting 28

III

5 Using the translator 29
5.1 Using the translator as a compiler 29
5.2 e translator command 29
5.3 Compiling multiple programs and using packages 34

6 Programmatic use of the NetRexxC translator 37
6.1 Compiling from memory strings 37

7 Using the prompt option 39
7.1 Using the translator as an Interpreter 40
7.2 Interpreting – Hints and Tips 41
7.3 Interpreting – Performance 41

8 Installing on an IBMMainframe 43

9 Installing and running on the Raspberry Pi 45

10 Troubleshooting 47

11 Current Restrictions 49
11.1 General restrictions 49
11.2 Compiler restrictions 49
11.3 Interpreter restrictions 50

Index 53

IV

eNetRexx Programming Series

is book is part of a library, the NetRexx Programming Series, documenting the NetRexx
programming language and its use and applications.is section lists the other publications in
this series, and their roles. ese books can be ordered in convenient hardcopy and electronic
formats from the Rexx Language Association.

uick Start Guide is guide is meant for an audience that has done some program-
ming and wants to start quickly. It starts with a quick tour of the
language, and a section on installing the NetRexx translator and
how to run it. It also contains help for troubleshooting if anything
in the installation does not work as designed, and states current
limits and restrictions of the open source reference implementa-
tion.

Programming Guide e Programming Guide is the one manual that at the same time
teaches programming, shows lots of examples as they occur in the
real world, and explains about the internals of the translator and
how to interface with it.

Language Reference Referred to as the NRL, this is the formal definition for the lan-
guage, documenting its syntax and semantics, and prescribingmin-
imal functionality for language implementors. It is the definitive
answer to any question on the language, and as such, is subject to
approval of theNetRexxArchitectureReviewBoard on any release
of the language (including its NRL).

NJPipes Reference e Data Flow oriented companion to NetRexx, with its CMS
Pipes compatible syntax, is documented in thismanual. It discusses
installing and running Pipes for NetRexx, and has ample examples
of defining your own stages in NetRexx.

i

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:
. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the console, are

in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing

1 -- salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-calledRailroadDiagrams to convey structure, manda-
tory and optional items

Properties

properties
�� ��

�visibility

�

�
�modifier

�

�
�deprecated

�� �
�

�
�unused

�� �
�

iii

Introduction

is document is the Quick Start Guide for the reference implementation of NetRexx. Net-
Rexx is a human-oriented programming language which makes writing and using Java1 classes
quicker and easier than writing in Java. It is part of the Rexx language family, under the gover-
nance of the Rexx Language Association.2 NetRexx has been developed and was made avail-
able as a free download by IBM since 1995 and is free and open source since June 8, 2011.

In this uick Start Guide, you’ll find information on
1. How easy it is to write for the JVM: A uick Tour of NetRexx
2. Installing NetRexx
3. Using the NetRexx translator as a compiler, interpreter, or syntax checker
4. Troubleshooting when things do not work as expected
5. Current restrictions.

e NetRexx documentation and soware are distributed by e Rexx Language Association
under the ICU license. For the terms of this license, see the included LICENSE file in this
package.

For details of the NetRexx language, and the latest news, downloads, etc., please see the
NetRexx documentation included with the package or available at: http://www.netrexx.org.

1Java is a trademark of Oracle, Inc.
2http.www.rexxla.org

v

http://www.netrexx.org
http.www.rexxla.org

Requirements

Since release 3.01 (August 2012), NetRexx requires only a JRE3 for program development,
where previously a Java SDK4 (earlier name: JDK) was required. For serious development
purposes a Java SDK is recommended, as the tools found therein might assist the develop-
ment process. NetRexx runs on a wide variety of hardware and operating systems; all releases
are tested on (non-exhaustive):

1. Windows Desktop and Server editions, with Oracle and IBM JVMs
2. Linux, with Oracle and IBM JVMs, including z/Linux
3. MacOSX with OpenJDK and Apple JVM
4. Android on ARM hardware with Dalvik virtual machine
5. z/OS OMVS
6. eComstation 2.x (OS/2) with eComstation Java 1.6
7. e Raspberry Pi, using Raspbian Linux and Oracle Embedded Edition ARM JDK-8

NetRexx runs equally well on 32- or 64-bit JVMs. As the translator is a command line tool, no
graphics configuration is required, and headless operation is supported. Care is taken to keep
the NetRexx runtime small, and to keep compatibility with earlier(post-beta) Java releases,
older operating systems and limited devices environments. e class file format, however, of
current release distributions is 1.6; for older formats, you canbuildNetRexx yourself or request
assistance from the development team (developers@netrexx.kenai.com)5 for a special build.

3Java Runtime Environment
4Soware Development Kit
5You will need to be member of the Kenai NetRexx project

vii

1

Auick Tour of NetRexx

is chapter summarizes themain features of NetRexx, and is intended to help you start using
it quickly. It is assumed that you have some knowledge of programming in a language such as
Rexx, C, BASIC, or Java, but extensive experience with programming is not needed.

is is not a complete tutorial, though – think of it more as a taster; it covers the main
points of the language and shows some examples you can try or modify. For full details of the
language, consult the NetRexx Programmer’s Guide and the NetRexx Language Definition
documents.

1.1 NetRexx programs

e structure of aNetRexx program is extremely simple.is sample program, “toast”, is com-
plete, documented, and executable as it stands:

Listing 1.1: Toast

1 /∗ This wishes you the best of health. ∗/
2 say 'Cheers!'

is program consists of two lines: the first is an optional comment that describes the pur-
pose of the program, and the second is a say instruction. say simply displays the result of the
expression following it – in this case just a literal string (you can use either single or double
quotes around strings, as you prefer). To run this program using the reference implementation
of NetRexx, create a file called toast.nrx and copy or paste the two lines above into it. You can
then use the NetRexxC Java program to compile it:

java org.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to run it:
java toast

You may also be able to use the netrexxc or nrc command to compile and run the program
with a single command (details may vary – see the installation and user’s guide document for
your implementation of NetRexx):

netrexxc toast �run

Of course, NetRexx can do more than just display a character string. Although the language
has a simple syntax, and has a small number of instruction types, it is powerful; the reference
implementation of the language allows full access to the rapidly growing collection of Java
programs known as class libraries, and allows new class libraries to be written inNetRexx.e
rest of this overview introduces most of the features of NetRexx. Since the economy, power,

1

and clarity of expression in NetRexx is best appreciated with use, you are urged to try using
the language yourself.

1.2 Expressions and variables

Like say in the “toast” example, many instructions inNetRexx include expressions that will be
evaluated. NetRexx provides arithmetic operators (including integer division, remainder, and
power operators), several concatenation operators, comparison operators, and logical opera-
tors.ese can be used in any combination within a NetRexx expression (provided, of course,
that the data values are valid for those operations).

All the operators act upon strings of characters (known asNetRexx strings), whichmay be of
any length (typically limited only by the amount of storage available). uotes (either single or
double) are used to indicate literal strings, and are optional if the literal string is just a number.
For example, the expressions:

’2’ + ’3’

’2’ + 3

2 + 3

would all result in ’5’.
e results of expressions are oen assigned to variables, using a conventional assignment

syntax:

Listing 1.2: Assignment

1 var1=5 /∗ sets var1 to '5' ∗/
2 var2=(var1+2)∗10 /∗ sets var2 to '70' ∗/

You can write the names of variables (and keywords) in whatever mixture of uppercase and
lowercase that you prefer; the language is not case-sensitive.is next sample program, “greet”,
shows expressions used in various ways:

Listing 1.3: Greet

1 /∗ A short program to greet you. ∗/
2 /∗ First display a prompt: ∗/
3 say 'Please type your name and then press ENTER:'
4 answer=ask /∗ Get the reply into ANSWER ∗/
5

6 /∗ If nothing was typed, then use a fixed greeting, ∗/
7 /∗ otherwise echo the name politely. ∗/
8 if answer='' then say 'Hello Stranger!'
9 else say 'Hello' answer'!'

Aer displaying a prompt, the program reads a line of text from the user (“ask” is a keyword
provided by NetRexx) and assigns it to the variable answer. is is then tested to see if any
characters were entered, and different actions are taken accordingly; for example, if the user
typed “Fred” in response to the prompt, then the program would display:

Hello Fred!

As you see, the expression on the last say (display) instruction concatenated the string “Hello”
to the value of variable answerwith a blank in between them (the blank is here a valid operator,
meaning “concatenate with blank”). e string “!” is then directly concatenated to the result
built up so far.ese unobtrusive operators (the blank operator and abuttal) for concatenation
are very natural and easy to use, and make building text strings simple and clear.

2

e layout of instructions is very flexible. In the “greet” example, for instance, the if instruc-
tion could be laid out in a number of ways, according to personal preference. Line breaks can
be added at either side of the then (or following the else).

In general, instructions are ended by the end of a line. To continue a instruction to a follow-
ing line, you can use a hyphen (minus sign) just as in English:

Listing 1.4: Continuation

1 say 'Here we have an expression that is quite long,' �
2 'so it is split over two lines'

is acts as though the two lines were all on one line, with the hyphen and any blanks around
it being replaced by a single blank. e net result is two strings concatenated together (with a
blank in between) and then displayed. When desired, multiple instructions can be placed on
one line with the aid of the semicolon separator:

Listing 1.5: Multiple Instructions

1 if answer='Yes' then do; say 'OK!'; exit; end

(many people find multiple instructions on one line hard to read, but sometimes it is conve-
nient).

1.3 Control instructions

NetRexx provides a selection of control instructions, whose form was chosen for readability
and similarity to natural languages. e control instructions include if... then... else (as in the
“greet” example) for simple conditional processing:

Listing 1.6: Conditional

1 if ask='Yes' then say "You answered Yes"
2 else say "You didn't answer Yes"

select... when... otherwise... end for selecting from a number of alternatives:

Listing 1.7: select - when - otherwise

1 select
2 when a>0 then say 'greater than zero'
3 when a<0 then say 'less than zero'
4 otherwise say 'zero'
5 end
6 select case i+1
7 when 1 then say 'one'
8 when 1+1 then say 'two'
9 when 3, 4, 5 then say 'many'
10 end

do... end for grouping:

Listing 1.8: do - end

1 if a>3 then do
2 say 'A is greater than 3; it will be set to zero'
3 a=0
4 end

and loop... end for repetition:

Listing 1.9: loop - end

1 /∗ repeat 10 times; I changes from 1 to 10 ∗/
2 loop i=1 to 10
3 say i end i

3

e loop instruction can be used to step a variable to some limit, by some increment, for a
specified number of iterations, and while or until some condition is satisfied. loop forever is
also provided, and loop over can be used to work through a collection of variables.

Loop execution may be modified by leave and iterate instructions that significantly reduce
the complexity of many programs. e select, do, and loop constructs also have the ability to
“catch” exceptions (see 1.13 on page 14.) that occur in the body of the construct. All three,
too, can specify a finally instruction which introduces instructions which are to be executed
when control leaves the construct, regardless of how the construct is ended.

1.4 NetRexx arithmetic

Character strings in NetRexx are commonly used for arithmetic (assuming, of course, that
they represent numbers). e string representation of numbers can include integers, decimal
notation, and exponential notation; they are all treated the same way. Here are a few:

’1234’

’12.03’

’�12’

’120e+7’

e arithmetic operations in NetRexx are designed for people rather than machines, so are
decimal rather than binary, do not overflow at certain values, and follow the rules that people
use for arithmetic. e operations are completely defined by the ANSI X3.274 standard for
Rexx, so correct implementations always give the same results. An unusual feature of NetRexx
arithmetic is the numeric instruction: this may be used to select the arbitrary precision of cal-
culations. You may calculate to whatever precision that you wish (for financial calculations,
perhaps), limited only by available memory. For example:

Listing 1.10: Digits

1 numeric digits 50
2 say 1/7

which would display
0.14285714285714285714285714285714285714285714285714

e numeric precision can be set for an entire program, or be adjusted at will within the pro-
gram.enumeric instruction can also be used to select the notation (scientific or engineering)
used for numbers in exponential format. NetRexx also provides simple access to the native bi-
nary arithmetic of computers. Using binary arithmetic offers many opportunities for errors,
but is useful when performance is paramount. You select binary arithmetic by adding the in-
struction:

options binary

at the top of a NetRexx program. e language processor will then use binary arithmetic (see
page 13) instead ofNetRexx decimal arithmetic for calculations, if it can, throughout the pro-
gram.

1.5 Doing things with strings

A character string is the fundamental datatype of NetRexx, and so, as you might expect, Net-
Rexx providesmany useful routines formanipulating strings.ese are based on the functions

4

of Rexx, but use a syntax that is more like Java or other similar languages:

Listing 1.11: Strings

1 phrase='Now is the time for a party'
2 say phrase.word(7).pos('r')

e second line here can be read from le to right as:
take the variable phrase, find the seventh word, and then find the position of the first “r” in that word.

is would display “3” in this case, because “r” is the third character in “party”.
(In Rexx, the second line above would have been written using nested function calls:

Listing 1.12: Rexx: Nested

1 say pos('r', word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack from right to
le to work out exactly what’s going on.)

In theNetRexx syntax, at each point in the sequence of operations some routine is acting on
the result of what has gone before. ese routines are calledmethods, to make the distinction
from functions (which act in isolation). NetRexx provides (as methods)most of the functions
that were evolved for Rexx, including:
. changestr (change all occurrences of a substring to another). copies (make multiple copies of a string). lastpos (find rightmost occurrence). left and right (return lemost/rightmost character(s)). pos and wordpos (find the position of string or a word in a string). reverse (swap end-to-end). space (pad between words with fixed spacing). strip (remove leading and/or trailing white space). verify (check the contents of a string for selected characters). word, wordindex, wordlength, and words (work with words).
ese and the others like them, and the parsing described in the next section,make it especially
easy to process text with NetRexx.

1.6 Parsing strings

e previous section described some of the string-handling facilities available; NetRexx also
provides string parsing, which is an easy way of breaking up strings of characters using simple
pattern matching.

A parse instruction first specifies the string to be parsed. is can be any term, but is oen
taken simply from a variable.e term is followed by a templatewhich describes how the string
is to be split up, and where the pieces are to be put.

1.6.1 Parsing into words

e simplest form of parsing template consists of a list of variable names. e string being
parsed is split up into words (sequences of characters separated by blanks), and each word
from the string is assigned (copied) to the next variable in turn, from le to right. e final

5

variable is treated specially in that it will be assigned a copy of whatever is le of the original
string and may therefore contain several words. For example, in:

Listing 1.13: Parsing Strings

1 parse 'This is a sentence.' v1 v2 v3

the variable v1 would be assigned the value “is”, v2 would be assigned the value “is”, and v3
would be assigned the value “a sentence.”.

1.6.2 Literal patterns

A literal string may be used in a template as a pattern to split up the string. For example

Listing 1.14: Parse

1 parse 'To be, or not to be?' w1 ',' w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point; each section
is then treated in just the same way as the whole string was in the previous example.

us, w1 would be set to “To be”, w2 and w3 would be assigned the values “or” and “not”,
and w4 would be assigned the remainder: “to be?”. Note that the pattern itself is not assigned
to any variable. e pattern may be specified as a variable, by putting the variable name in
parentheses. e following instructions:

Listing 1.15: Parse with comma

1 comma=','
2 parse 'To be, or not to be?' w1 (comma) w2 w3 w4

therefore have the same effect as the previous example.

1.6.3 Positional patterns

e third kind of parsing mechanism is the numeric positional pattern. is allows strings to
be parsed using column positions.

1.7 Indexed strings

NetRexx provides indexed strings, adapted from the compound variables of Rexx. Indexed
strings form a powerful “associative lookup”, or dictionary, mechanismwhich can be used with
a convenient and simple syntax.

NetRexx string variables can be referred to simply by name, or also by their name qualified
by another string (the index). When an index is used, a value associated with that index is
either set:

Listing 1.16: Index

1 fred=0 �� initial value
2 fred[3]='abc' �� indexed value

or retrieved:

Listing 1.17: Retrieving

1 say fred[3] �� would say "abc"

6

in the latter case, the simple (initial) value of the variable is returned if the index has not been
used to set a value. For example, the program:

Listing 1.18: Woof

1 bark='woof'
2 bark['pup']='yap'
3 bark['bulldog']='grrrrr'
4 say bark['pup'] bark['terrier'] bark['bulldog']

would display
yap woof grrrrr

Note that it is not necessary to use a number as the index; any expression may be used inside
the brackets; the resulting string is used as the index. Multiple dimensions may be used, if
required:

Listing 1.19: Multiple Dimensions

1 bark='woof'
2 bark['spaniel', 'brown']='ruff'
3 bark['bulldog']='grrrrr'
4 animal='dog'
5 say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

which would display
ruff woof grrrrr

Here’s a more complex example using indexed strings, a test program with a function (called
a static method in NetRexx) that removes all duplicate words from a string of words:

Listing 1.20: justonetest.nrx

1 /∗ justonetest.nrx ��test the justone function. ∗/
2 say justone('to be or not to be') /∗ simple testcase ∗/
3 exit
4 /∗ This removes duplicate words from a string, and ∗/
5 /∗ shows the use of a variable (HADWORD) which is ∗/
6 /∗ indexed by arbitrary data (words). ∗/
7 method justone(wordlist) static
8 hadword=0 /∗ show all possible words as new ∗/
9 outlist='' /∗ initialize the output list ∗/
10 loop while wordlist\='' /∗ loop while we have data ∗/
11 /∗ split WORDLIST into first word and residue ∗/
12 parse wordlist word wordlist
13 if hadword[word] then iterate /∗ loop if had word ∗/
14 hadword[word]=1 /∗ remember we have had this word ∗/
15 outlist=outlist word /∗ add word to output list ∗/
16 end
17 return outlist /∗ finally return the result ∗/

Running this program would display just the four words “to”, “be”, “or”, and “not”.

1.8 Arrays

NetRexx also supports fixed-size arrays.ese are an ordered set of items, indexed by integers.
To use an array, you first have to construct it; an individual item may then be selected by an
index whose value must be in the range 0 through n�1, where n is the number of items in the
array:

Listing 1.21: Arrays

1 array=String[3] �� make an array of three Strings
2 array[0]='String one' ��set each array item

7

3 array[1]='Another string'
4 array[2]='foobar'
5 loop i=0 to 2 �� display the items
6 say array[i]
7 end

is example also shows NetRexx line comments; the sequence “––” (outside of literal strings
or “/*” comments) indicates that the remainder of the line is not part of the program and is
commentary.

NetRexx makes it easy to initialize arrays: a term which is a list of one or more expressions,
enclosed in brackets, defines an array. Each expression initializes an element of the array. For
example:

Listing 1.22: Initializing elements

1 words=['Ogof', 'Ffynnon', 'Ddu']

would setwords to refer to an array of three elements, each referring to a string. So, for example,
the instruction:

Listing 1.23: Address Array Element

1 say words[1]

would then display
Ffynnon

1.9 ings that aren’t strings

In all the examples so far, the data being manipulated (numbers, words, and so on) were ex-
pressed as a string of characters. Many things, however, can be expressed more easily in some
other way, so NetRexx allows variables to refer to other collections of data, which are known
as objects.

Objects are defined by a name that lets NetRexx determine the data and methods that are
associated with the object. is name identifies the type of the object, and is usually called the
class of the object.

For example, an object of class Oblong might represent an oblong to be manipulated and
displayed. e oblong could be defined by two values: its width and its height. ese values
are called the properties of the Oblong class.

Most methods associated with an object perform operations on the object; for example a
size method might be provided to change the size of an Oblong object. Other methods are
used to construct objects (just as for arrays, an object must be constructed before it can be
used). In NetRexx and Java, these constructor methods always have the same name as the class
of object that they build (“Oblong”, in this case).

Here’s how an Oblong class might be written in NetRexx (by convention, this would be
written in a file called Oblong.nrx; implementations oen expect the name of the file tomatch
the name of the class inside it):

Listing 1.24: Oblong

1 /∗ Oblong.nrx -- simple oblong class ∗/
2 class Oblong
3

4 width -- size (X dimension)
5 height -- size (Y dimension)
6

8

7 /∗ Constructor method to make a new oblong ∗/
8 method Oblong(new width, new height)
9 -- when we get here, a new (uninitialized) object has been
10 -- created. Copy the parameters we have been given to the
11 -- four properties of the object:
12 width=new width; height=new height
13

14 /∗ Change the size of a Oblong ∗/
15 method size(new width, new height) returns Oblong
16 width=new width; height=new height
17 return this -- return the resized object
18

19 /∗ Change the size of a Oblong, relatively ∗/
20 method sizerelative(rel width, rel height) returns Oblong
21 width=width+rel width; height=height+rel height
22 return this
23

24 /∗ 'Print' what we know about the oblong ∗/
25 method print()
26 say 'Oblong' width 'x' height

To summarize:
1. A class is started by the class instruction, which names the class.
2. e class instruction is followed by a list of the properties of the object. ese can be

assigned initial values, if required.
3. eproperties are followedby themethods of the object. Eachmethod is introducedby a

method instruction which names the method and describes the arguments that must be
supplied to themethod.ebodyof themethod is endedby thenextmethod instruction
(or by the end of the file).

e Oblong.nrx file is compiled just like any other NetRexx program, and should create a class
file called Oblong.class. Here’s a program to try out the Oblong class:

Listing 1.25: Try Oblong

1 /∗ tryOblong.nrx -- try the Oblong class ∗/
2 first=Oblong(5,3) -- make an oblong
3 first.print -- show it
4 first.relsize(1,1).print -- enlarge and print again
5 second=Oblong(1,2) -- make another oblong
6 second.print -- and print it

When tryOblong.nrx is compiled, you’ll notice (if your compiler makes a cross-reference list-
ing available) that the variables first and second have type Oblong. ese variables refer to
Oblongs, just as the variables in earlier examples referred to NetRexx strings.

Once a variable has been assigned a type, it can only refer to objects of that type. is helps
avoid errors where a variable refers to an object that it wasn’t meant to.

1.9.1 Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are in fact
classes (you may have noticed that compiling themwith the reference implementation creates
xxx.class files, where xxx is the name of the source file). e environment underlying the
implementation will allow a class to run as a stand-alone application if it has a static method
called main which takes an array of strings as its argument.

If necessary (that is, if there is no class instruction) NetRexx automatically adds the nec-
essary class and method instructions for a stand-alone application, and also an instruction to
convert the array of strings (each of which holds one word from the command string) to a
single NetRexx string.

e automatic additions can also be included explicitly; the “toast” example could therefore
have been written:

9

Listing 1.26: New Toast

1 /∗ This wishes you the best of health. ∗/
2 class toast
3 method main(argwords=String[]) static
4 arg=Rexx(argwords)
5 say 'Cheers!'

though in this program the argument string, arg, is not used.

1.10 Extending classes

It’s common, when dealing with objects, to take an existing class and extend it. One way to do
this is to modify the source code of the original class – but this isn’t always available, and with
many different people modifying a class, classes could rapidly get overcomplicated.

Languages that deal with objects, like NetRexx, therefore allow new classes of objects to
be set up which are derived from existing classes. For example, if you wanted a different kind
of Oblong in which the Oblong had a new property that would be used when printing the
Oblong as a rectangle, you might define it thus:

Listing 1.27: charOblong.nrx

1 /∗ charOblong.nrx -- an oblong class with character ∗/
2 class charOblong extends Oblong
3 printchar -- the character for display
4 /∗ Constructor to make a new oblong with character ∗/
5 method charOblong(newwidth, newheight, newprintchar)
6 super(newwidth, newheight) -- make an oblong
7 printchar=newprintchar -- and set the character
8 /∗ 'Print' the oblong ∗/
9 method print
10 loop for super.height
11 say printchar.copies(super.width)
12 end

ere are several things worth noting about this example:
1. e “extends Oblong” on the class instruction means that this class is an extension of

the Oblong class. e properties and methods of the Oblong class are inherited by this
class (that is, appear as though they were part of this class). Another common way of
saying this is that “charOblong” is a subclass of “Oblong” (and “Oblong” is the superclass of
“charOblong”).

2. is class adds the printchar property to the properties already defined for Oblong.
3. e constructor for this class takes awidth andheight (just likeOblong) and adds a third

argument to specify a print character. It first invokes the constructor of its superclass
(Oblong) to build an Oblong, and finally sets the printchar for the new object.

4. e new charOblong object also prints differently, as a rectangle of characters, according
to its dimension.e printmethod (as it has the same name and arguments – none – as
that of the superclass) replaces (overrides) the print’ method of Oblong.

5. e othermethods ofOblong are not overridden, and therefore can be used on charOb-
long objects.

e charOblong.nrx file is compiled just like Oblong.nrx was, and should create a file called
charOblong.class.

Here’s a program to try it out

Listing 1.28: tryCharOblong.nrx

1 /∗ trycharOblong.nrx -- try the charOblong class ∗/

10

2 first=charOblong(5,3,'#') -- make an oblong
3 first.print -- show it
4 first.relsize(1,1).print -- enlarge and print again
5 second=charOblong(1,2,'∗') -- make another oblong
6 second.print -- and print it

is should create the two charOblong objects, and print them out in a simple “character
graphics” form. Note the use of the method relsize from Oblong to resize the charOblong
object.

1.10.1 Optional arguments

Allmethods inNetRexxmay have optional arguments (omitted from the right) if desired. For
an argument to be optional, you must supply a default value. For example, if the charOblong
constructor was to have a default value for printchar, its method instruction could have been
written

Listing 1.29: Default value X

1 method charOblong(newwidth, newheight, newprintchar='X')

which indicates that if no third argument is supplied then ’X’ should be used. A program
creating a charOblong could then simply write:

Listing 1.30: Default value

1 first=charOblong(5,3) -- make an oblong

which would have exactly the same effect as if ’X’ were specified as the third argument.

1.11 Tracing

NetRexx tracing is defined as part of the language. e flow of execution of programs may be
traced, and this trace can be viewed as it occurs (or captured in a file).e trace can show each
clause as it is executed, and optionally show the results of expressions, etc. For example, the
trace results in the program “trace1.nrx”:

Listing 1.31: Trace

1 trace results
2 number=1/7
3 parse number before '.' after
4 say after'.'before

would result in:

��� trace1.nrx

2 *=* number=1/7

>v> number ”0.142857143”

3 *=* parse number before ’.’ after

>v> before ”0”

>v> after ”142857143”

4 *=* say after’.’before

>>> ”142857143.0”

142857143.0

11

where the line marked with “���” indicates the context of the trace, lines marked with “*=*”
are the instructions in the program, lines with “>v>” show results assigned to local variables,
and lines with “»>” show results of unnamed expressions.

Further, tracemethods lets you trace the use of all methods in a class, along with the values
of the arguments passed to each method. Here’s the result of adding trace methods to the
Oblong class shown earlier and then running tryOblong:

��� Oblong.nrx

8 *=* method Oblong(newwidth, newheight)

>a> newwidth ”5”

>a> newheight ”3”

26 *=* method print

Oblong 5 x 3

20 *=* method relsize(relwidth, relheight)�

21 *�*

>a> relwidth ”1”

>a> relheight ”1”

26 *=* method print

Oblong 6 x 4

returns Oblong

10 *=* method Oblong(newwidth, newheight)

>a> newwidth ”1”

>a> newheight ”2”

26 *=* method print

Oblong 1 x 2

where lines with “>a>” show the names and values of the arguments.
It is oen useful to be able to find out when (and where) a variable’s value is changed. e

trace var instruction does just that; it adds names to or removes names froma list ofmonitored
variables. If the name of a variable in the current class ormethod is in the list, then trace results
is turned on for any assignment, loop, or parse instruction that assigns a new value to the
named variable.

Variable names to be added to the list are specified by listing them aer the var keyword.
Any name may be optionally prefixed by a – sign., which indicates that the variable is to be
removed from the list.

For example, the program “trace2.nrx”:

Listing 1.32: trace2.nrx

1 trace var a b -- now variables a and b will be traced
2 a=3
3 b=4
4 c=5
5 trace var �b c -- now variables a and c will be traced
6 a=a+1
7 b=b+1
8 c=c+1
9 say a b c

would result in:
--- trace2.nrx

3 *=* a=3

>v> a ”3”

4 *=* b=4

12

>v> b ”4”

8 *=* a=a+1

>v> a ”4”

10 *=* c=c+1

>v> c ”6”

4 5 6

1.12 Binary types and conversions

Most programming environments support the notion of fixed-precision “primitive” binary
types, which correspond closely to the binary operations usually available at the hardware level
in computers. For the reference implementation, these types are:
. byte, short, int, and long – signed integers that will fit in 8, 16, 32, or 64 bits respectively
. float and double – signed floating point numbers that will fit in 32 or 64 bits respectively.
. char – an unsigned 16-bit quantity, holding a Unicode character
. boolean – a 1-bit logical value, representing 0 or 1 (“false” or “true”).
Objects of these types are handled specially by the implementation “under the covers” in order
to achieve maximum efficiency; in particular, they cannot be constructed like other objects –
their value is held directly. is distinction rarely matters to the NetRexx programmer: in the
case of string literals an object is constructed automatically; in the case of an int literal, an
object is not constructed.

Further, NetRexx automatically allows the conversion between the various forms of charac-
ter strings in implementations6 and the primitive types. e “golden rule” that is followed by
NetRexx is that any automatic conversion which is applied must not lose information: either
it can be determined before execution that the conversion is safe (as in int to String) or it will
be detected at execution time if the conversion fails (as in String to int).

e automatic conversions greatly simplify the writing of programs; the exact type of nu-
meric and string-like method arguments rarely needs to be a concern of the programmer. For
certain applications where early checking or performance override other considerations, the
reference implementation of NetRexx provides options for different treatment of the primi-
tive types:

1. options strictassign – ensures exact type matching for all assignments. No conversions
(including those from shorter integers to longer ones) are applied. is option provides
stricter type-checking than most other languages, and ensures that all types are an exact
match.

2. options binary – uses implementation-dependent fixed precision arithmetic on binary
types (also, literal numbers, for example, will be treated as binary, and local variables will
be given “native” types such as int or String, where possible).

Binary arithmetic currently gives better performance than NetRexx decimal arithmetic, but
places the burden of avoiding overflows and loss of information on the programmer.

eoptions instruction (whichmay listmore thanoneoption) is placedbefore thefirst class
instruction in a file; the binary keywordmay also be used on a class ormethod instruction, to
allow an individual class or method to use binary arithmetic.

6In the reference implementation, these are String, char, char[] (an array of characters), and the NetRexx string type, Rexx.

13

1.12.1 Explicit type assignment

You may explicitly assign a type to an expression or variable:

Listing 1.33: Assigning Type

1 i=int 3000000 -- 'i' is an 'int' with value 3000000
2 j=int 4000000 -- 'j' is an 'int' with value 4000000
3 k=int -- 'k' is an 'int', with no initial value
4 say i∗j -- multiply and display the result
5 k=i∗j -- multiply and assign result to 'k'

is example also illustrates an important difference between options nobinary and op-
tions binary. With the former (the default) the say instruction would display the result
“1.20000000E+13” and a conversion overflow would be reported when the same expression
is assigned to the variable k.

With options binary, binary arithmetic would be used for the multiplications, and so no
error would be detected; the say would display “–138625024” and the variable k takes the
incorrect result.

1.12.2 Binary types in practice

In practice, explicit type assignment is only occasionally needed in NetRexx. ose conver-
sions that are necessary for using existing classes (or those that use options binary) are gener-
ally automatic. For example, here is an Applet for use by Java-enabled browsers:

Listing 1.34: A Simple Applet

1 /∗ A simple graphics Applet ∗/
2 class Rainbow extends Applet
3 method paint(g=Graphics) -- called to repaint window
4 maxx=size.�width1
5 maxy=size.�height1
6 loop y=0 to maxy
7 col=Color.getHSBColor(y/maxy, 1, 1) -- new colour
8 g.setColor(col) -- set it
9 g.drawLine(0, y, maxx, y) -- fill slice
10 end y

In this example, the variable col will have type Color, and the three arguments to the method
getHSBColor will all automatically be converted to type float. As no overflows are possible in
this example, options binary may be added to the top of the program with no other changes
being necessary.

1.13 Exception and error handling

NetRexx does not have a goto instruction, but a signal instruction is provided for abnormal
transfer of control, such aswhen something unusual occurs.Using signal raises an exception; all
control instructions are then “unwound” until the exception is caught by a control instruction
that specifies a suitable catch instruction for handling the exception.

Exceptions are also raised when various errors occur, such as attempting to divide a number
by zero. For example:

Listing 1.35: Exception

1 say 'Please enter a number:'
2 number=ask
3 do
4 say 'The reciprocal of' number 'is:' 1/number

14

5 catch Exception
6 say 'Sorry, could not divide "'number'" into 1'
7 say 'Please try again.'
8 end

Here, the catch instruction will catch any exception that is raised when the division is at-
tempted (conversion error, divide by zero, etc.), and any instructions that follow it are then
executed. If no exception is raised, the catch instruction (and any instructions that follow it)
are ignored.

Any of the control instructions that end with end (do, loop, or select) may be modified
with one or more catch instructions to handle exceptions.

1.14 Summary and Information Sources

e NetRexx language, as you will have seen, allows the writing of programs for the Java en-
vironment with a minimum of overhead and “boilerplate syntax”; using NetRexx for writing
Java classes could increase your productivity by 30% or more. Further, by simplifying the va-
riety of numeric and string types of Java down to a single class that follows the rules of Rexx
strings, programming is greatly simplified. Where necessary, however, full access to all Java
types and classes is available.

Other examples are available, including both stand-alone applications and samples of
applets for Java-enabled browsers (for example, an applet that plays an audio clip, and an-
other that displays the time in English). You can find these from the NetRexx web pages,
at http://www.netrexx.org. Also at that location, you’ll find the NetRexx language speci-
fication and other information, and downloadable packages containing the NetRexx so-
ware and documentation. ere is a large selection of NetRexx examples available at http:
//www.rosettacode.org. e soware should run on any platform that has a Java Virtual
Machine (JVM) available.

15

http://www.netrexx.org
http://www.rosettacode.org
http://www.rosettacode.org

2

Installation

is chapter of the document tells you how to unpack, install, and test the NetRexx transla-
tor package. is will install documentation, samples, and executables. It will first state some
generic steps that are sufficient for most users. e appendices contain very specific instruc-
tions for a range of platforms that NetRexx is used on. Note that to run any of the samples,
or use the NetRexx translator, you must have already installed the Java runtime (and toolkit,
if you want to compile NetRexx programs using the default compiler). e NetRexx samples
and translator, version 3.02, are guaranteed to run on Java version 1.5 or later; the programs
using theNetRexxR.jar runtime librarywill run on earlier versions ofmany JVM’s.7 For ease of
development and the availability of additional Java tools, a Java SDK can be installed, butNet-
Rexx programs can be interpreted or compiled on a Java JRE installation8. By default the built-
in (same compiler classes as javac uses) compiler of the Java SDK is used. You can test whether
Java is installed, and its version, by trying the following command at a command prompt:

java �version

which should display a response similar to this:
java version ”1.7.0_17”

Java(TM) SE Runtime Environment (build 1.7.0_17-b02)

Java HotSpot(TM) 64-Bit Server VM (build 23.7-b01, mixed mode)

For more information on Java installation, see the Oracle Java web page9 – or other suppliers
of Java toolkits.

2.1 Unpacking the NetRexx package

eNetRexxpackage is shipped as a collectionoffiles compressed into thefileNetRexx<version>.zip.
Most modern operating environments can uncompress a .zip package by doubleclicking.

2.1.1 Unpacking the NetRexx.zip file

An unzip command is included in most Linux distributions, and Mac OSX. You can also use
the jar command which comes with all Java development kits, with the options xvf. Choose
where you want the NetRexx directory tree to reside, and unpack the zip file in the directory
which will be the parent of the NetRexx tree. Here are some tips: e syntax for unzipping
NetRexx.zip is simply

7For earlier versions of Java, NetRexx 2.05 is available from the NetRexx.org website.
8See chapter 4
9at http://www.javasoft.com

17

http://www.javasoft.com

unzip NetRexx-3.02

which should create the files and directory structure directly.
. WinZip: all versions may be used
. Linux unzip: use the syntax: unzip –a NetRexx. e “–a” flag will automatically convert

text files to Unix format if necessary
. jar: e syntax for unzipping NetRexx.zip is

jar xf NetRexx-3.02.zip

which should create the files and directory structure directly. e “x” indicates that the con-
tents should be extracted, and the “f ” indicates that the zip file name is specified.Note that the
extension (.zip) is required.

Aer unpacking, the following directories should have been created:
|-bin

|-documents

|-examples

|---NrxRedBk

|-----Redbook

|-------exception

|-------gui

|-------utility

|-----cgi

|-----compiler

|-----exceptions

|-----file

|-----first

|-----gui

|-------Animator

|-------BorderLayout

|-------CardLayout

|-------CheckBox

|-------CloseWindow

|-------EqualSizePanel

|-------ExtendedLabel

|-------FieldSelect

|-------FlowLayout

|-------GridBagLayout

|-------GridLayout

|-------GuiApp

|-------GuiFirst

|-------ImagePanel

|-------MenuBar

|-------MessageBox

|-------PhotoAlbum

|-------PopUpMenu

|-------PromptDialog

|-------SimpleGridBagLayout

18

|-------WindowFocus

|-------WindowSupport

|-----jdbc

|-----language

|-----network

|-------net

|-------rmi

|-------rmichat

|-------rmijdbc

|-------url

|-----nrxbeans

|-------lab

|-------sample

|-----script

|-----thread

|-------consumer

|-------philfork

|-------synch

|---ant-task

|---enterprise

|-----wmq

|---ibm-historic

|---new-3.01

|---rosettacode

|---windows

|-lib

|-runlib

|-tools

|---ant-task

|---emacs

2.2 eNetRexx packages

In the lib subdirectory, there are three java archive files (jars), which are called:
NetRexxF.jar e translator (and runtime) package including the ecj10 java compiler
NetRexxC.jar e translator (and runtime) package without java compiler
ecj-4.2.jar e eclipse java compiler package

e runlib directory contains one java archive:
NetRexxR.jar A minimal package including only the runtime NetRexx classes - for distribu-

tion with NetRexx programs
It is advised to start with the NetRexxF.jar archive package. is can be used for your first
NetRexx activities in a way that is independent of the Java classpath, or the Java installation - a
development installation (JDK) or just the java runtime (JRE). is enables you to interpret,
or compile NetRexx programs to .class files.eNetRexxC.jar package is used by experienced

10Eclipse Compiler for Java

19

NetRexx users; it requires a correct setting of the classpath environment variable (explicitly,
or implicitly by adding it to the JVM standard extension directory) to find the java compiler
(either the JDK included javac classes or the included eclipse compiler) - on a JDK or JRE
installation. e NetRexxR.jar contains only the runtime of the NetRexx language. It can be
added to compiled NetRexx applications if a small footprint is required. e following para-
graph discusses getting the compiler to translate your first program using the NetRexxF.jar -
aer that the process of adding the translator to your environment is shown, what we will call
’installing’ here.ere is no requirement for a ’setup’ type of install, and when you can execute
Java on your system, there is no need to be ’Administrator’ or ’root’ on your system - NetRexx
runs fine from your home directory.

2.3 First steps with NetRexx

1. Verify the working of java on your system with the command: java -version
If this does not work, obtain a version at http://java.com and install it.

2. Create a file named hello.nrx in the directory that contains NetRexxF.jar, with the line:
say ’hello, netrexx world!’

3. In this directory, verify the working of the interpreter with:
java -jar NetRexxF.jar -exec hello

4. Verify the creating of a .class file using the compiler with:
java -Dnrx.compiler=ecj -jar NetRexxF.jar hello

is should create hello.class, to be executed with the command:
java -cp NetRexxF.jar:. hello

(on windows, the colon should be a semicolon)
e -jar directive tells the JVM to ignore the set classpath and to start a method that is indi-
cated in the jar metadata.is method is, for the NetRexxF.jar:

java org.netrexx.process.NetRexxC

just as shown in 2.7 on page 22.Now that you have seen that it works, you can use thismethod
of execution11, or proceed with installing a more flexible way of using NetRexx.

When a class calls another class that is located in the same directory, we need to add this
directory to the classpath. For example, if we want to compile the charOblong.nrx example
from page 10, which extends the Oblong class, we need to invoke it as:

java -Dnrx.compiler=ecj -jar NetRexxF.jar -cp NetRexxF.jar;. charOblong.nrx

is can be done in a more straightforward way, by installing the NetRexxC.jar on the class-
path and using the provided nrc script; this is the subject of the next section.

2.4 Installing the NetRexx Translator

e NetRexx package includes the NetRexx translator – a Java application which can be used
for compiling, interpreting, or syntax-checking NetRexx programs. e procedure for instal-
lation is as follows12:

11Taking into account that you will have to add additional entries to the -jar argument for all but the most trivial applications.
12ForWindows operating systems, forward slashes are backslashes.

20

http://java.com

1. Make the translator visible to the Java Virtual Machine (JVM) - either:.Add the full path and filename of theNetRexx/lib/NetRexxC.jar to the CLASSPATH
environment variable for your operating system.13.Or (deprecated): Copy the file NetRexx/lib/NetRexxC.jar to the jre/lib/ext directory
in the Java installation tree. e JVM will automatically find it there and make it avail-
able14.

2. Copy all the files in the NetRexx/bin directory to a directory in your PATH. is is not
essential, but makes shorthand scripts and a test case available.

3. Make the file [...]/lib/tools.jar (which contains the javac compiler) in the Java tree visible
to the JVM. You can do this either by adding its path and filename to the CLASSPATH
environment variable, or by moving it to the jre/lib/ext directory in the Java tree. is
file sometime goes under different names, thatwill bementioned in the platform-specific
appendices.

2.5 Installing just the NetRexx Runtime

If you only want to runNetRexx programs and do not wish to compile or interpret them, or if
you would like to use the NetRexx string (Rexx) classes from other languages, you can install
just the NetRexx runtime classes.
To do this, follow the appropriate instructions for installing the compiler, but use the Net-
RexxR.jar instead ofNetRexxC.jar.eNetRexxR.jar file can be found in theNetRexx/runlib
directory.
You do not need to use or copy the executables in theNetRexx/bin directory.
e NetRexx class files can then be referred to from Java or NetRexx programs by importing
the package netrexx.lang. For example, a string might be of class netrexx.lang.Rexx.
For information on the netrexx.lang.Rexx class and other classes in the runtime, see the Net-
Rexx Language Reference document.

note If you have already installed the NetRexx translator (NetRexxC.jar) then you do not
need to install NetRexxR.jar; the latter contains only the NetRexx runtime classes, and these
are already included in NetRexxC.jar.

2.6 Setting the CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH to indicate a
search path for Java classes. e Java Virtual Machine and the NetRexx translator rely on the
CLASSPATH value to find directories, zip files, and jar files which may contain Java classes.
e procedure for setting theCLASSPATH environment variable depends on your operating
system, and for Unix versions, which shell you are using.
. For Linux, MacOSX and other Unix versions (BASH (bash), Korn (ksh), or Bourne (sh)

shell), use:
CLASSPATH=<newdir>:\$CLASSPATH

13if you have a NetRexxC.zip in your CLASSPATH from an earlier version of NetRexx, remove it (NetRexxC.jar replaces Net-
RexxC.zip).

14 is has serious drawbacks, however: As soon as the Java version is updated, NetRexx applications may mysteriously – due
to the now obsolete path - fail. e contents of the extensions directory are unversioned. Running multiple versions of Java and
NetRexx for testing purposes, or with an application that included another version of NetRexx will become very hard when this way
of installing is chosen.

21

export CLASSPATH

. is should be placed in your /.bash profile, /etc/profile, .login, or .profile file, as appro-
priate. e environment changes can be made active by running, for example,

. .bash_profile

in your home directory, when this location is where you made the changes.
. For Linux, MacOSX and other Unix versions (C shell (csh and tcsh)), use:

setenv CLASSPATH <newdir>:\$CLASSPATH

ese should be set in your .cshrc file (csh) or .tcshrc (tcsh). e rehash command can be
used to activate these changes in the environment. If you are unsure of how to do this, check
the documentation you have for installing the Java toolkit.
. For Windows operating systems, it is best to set the system wide environment, which is

accessible using theControl Panel (a search for “environment” offsets themany attempts to
relocate the exact dialog in successive Windows Control Panel versions somewhat).
. In Windows Powershell, limitations set by the administrator can determine which kind of

scripting (using Powershell, not NetRexx) can be undertaken. It might be difficult to mod-
ify the enviroment, and a different from scripting under the cmd.exe processor is that the
environment is local to an execution unit of a line. When changing the environment is al-
lowed, and a Powershell script is used to start the NetRexxtranslator, this is how it can be
done:

$env:path = ”c:\program files\java\jdk1.7.0_02\bin;\Users\rvj\bin;”

$env:classpath = ”.;\Users\rvj\lib\NetRexxC.jar”

. When using an IBM JVM or JRE, make sure that the file vm.jar is on the CLASSPATH -
NetRexx will complain about missing java.lang.Object when it is not.
In case of encountering difficulties in getting the classpath settings to work, the following

remarks can be helpful:
. Spaces in directory names areOK, but these paths must be surrounded by double quotes in

most environments, like Windows and Unix
. Non-existing directories in classpaths can hurt - move the NetRexxC.jar path to the begin-

ning of classpath to eliminate the risk of non-existing directories.

2.7 Testing the NetRexx Installation

Aer installing NetRexx, it is recommended that you test that it is working correctly. If there
are any problems, check theTroubleshooting section of this document, chapter 10 on page 47.

Test the installation by typing in a file named ’hello.nrx’ containing the line:
say ’hello, world’

If you want to avoid typing in the file yourself,
./examples/ibm-historic/hello.nrx

has the original version of this program.

1. Enter the command

java org.netrexx.process.NetRexxC hello

22

Make sure that the userid that you are using for this has write authorization for the di-
rectory that contains the source.15 is should run the NetRexx compiler, which first
translates the NetRexx program hello.nrx to the Java program hello.java. It then invokes
the default Java compiler (javac16), to compile the file hello.java to make the binary class
file hello.class. e intermediate hello.java file is then deleted, unless an error occurred
or you asked for it to be kept. You can also specify the source filename as ’hello.nrx’ - for
convenience, the translator will look for a file with a ’.nrx’ suffix if this is not specified.

2. Enter the command
java hello

is runs (interprets the bytecodes in) the hello.class file, which should display a simple
greeting. On some systems, you may first have to add the directory that contains the
hello.class file to the CLASSPATH setting so Java can find it.

3. With the sample scripts provided (NetRexxC.cmd,NetRexxC.bat, orNetRexxC.sh), or
the equivalent in the scripting language of your choice, the steps above can be combined
into a simple single command such as:
NetRexxC.sh �run hello

is package also includes a trivial nrc, andmatching nrc.cmd and nrc.bat scripts, which
simply pass on their arguments to NetRexxC; “nrc” is just a shorter name that saves
keystrokes, so for the last example you could type:

nrc �run hello

Note that scripts may be case-sensitive, and you will probably have to spell the name of
the program exactly as it appears in the filename.Also, to use –run, youmay need to omit
the .nrx extension. You could also edit the appropriate nrc.cmd, nrc.bat, or nrc script
and add your favourite “default” NetRexxC options there. For example, youmight want
to add the –prompt flag (described later) to save reloading the translator before every
compilation. If you do change a script, keep a backup copy so that if you install a new
version of the NetRexx package you won’t overwrite your changes. On Unix versions,
do not forget to make the scripts nrc and NetRexxC.sh executable with the command
chmod +x scriptname.

15For example, more modern versions of Windows do not allow non-admin userids to write into the program files directories. In
this case, make a directory under your home directory and copy the hello.nrx file there, and start the nrc command from the same
location. Running it from the examples directory will work.

16In fact, the class that the javac program also calls for compilation - but you can use other java compilers

23

3

Unicode

e JVM works with Unicode as a string representation; for this reason the display of charac-
ters in alphabets other than the latin alphabet does not pose a problem. ToworkwithUnicode
and internationalization in a straightforward way, a combination of factors must be present.
e operating system, your editor, shell and character set support must be compatible with
Unicode. A set fonts very seldom contains glyphs17 for all Unicode code points (values). Be
certain to save the program file as the right type; some editors can save as ASCII, UTF-8 and
UTF-16. Some editors seem to support Unicode but have made mistakes in the implemen-
tation. e NetRexx translator has a -utf8 option that makes it accept this encoding in the
source. is option is not necessary for the use of Unicode in variables - this always works,
it being the native encoding of the JVM. e option is rather meant to enable specification
of NetRexx syntax elements in Unicode. is makes it possible to use Class names, Method
names and variable names composed of Unicode characters.

Some things to think of when using the -utf8 option
. It is not the default.. eoption -utf8 can be specified in the program source, but the value of this option on the

compiler command line must be equal to the value of the program option. Here the rule
that the last specified value for an option is applicable, does not count. When method names are specified in Unicode, they need to be symbols and not escaped
Unicode characters. When you use Unicode in a Class name, be sure that the program file name matches that.. A filename in Unicode might still spell trouble when using it in conjunction with version
management soware, sharing it using email or other usages that are not limited to one file
system and encoding method.

17is is a typographical term for character form

25

4

Running on a JRE-only environment

4.1 Eclipse Batch Compiler

NetRexx (since the 3.01 package) can be used on a JRE-only environment; it does not need an
SDK (JDK) when the included ecj (Eclipse Compiler for Java) is available on the classpath.
is compiler is a part of theEclipse JDTCore,which is the Java infrastructure of the Java IDE.
is is an incremental Java compiler. It is based on technology evolved from the VisualAge for
Java compiler and maintained by IBM and the Eclipse Foundation. In particular, it allows
one to run and debug code which still contains unresolved errors. Future releases of NetRexx
might be exploringmore of the features of this compiler, like the extensive error reporting and
Currently, the 4.2 level of the core compiler jar is delivered with NetRexx. ere are other
standalone Java compilers, but aer extensive research we have chosen to include this one.
Using the –nocompile and –keepasjava options it is always possible to substitute your own
compilers as subsequent stages in the build process.

4.2 e nrx.compiler property

e NetRexx language processor is a translator package that either interprets or executes Net-
Rexx language source, and (by default) compiles the generated Java language source code with
the SDK-included javac compiler, or rather, the Java compiler class sun.tools.javac.Main class
that is delivered (in most implementations) in the tools.jar file, that is also called by the javac
executable. A new property is introduced to make the language processor choose the ecj com-
piler18:
-Dnrx.compiler=ecj

is directs the NetRexxC processor to use the ecj compiler to do the java compile step
instead of javac. For retroactive continuity, this property can also be set to javac - which is still
the default when the property is not specified. e NetRexxC command script can, on systems
that do not have a javac compiler installed, be changed to state
java -Dnrx.compiler=ecj org.netrexx.process.NetRexxC $*

In this case all compiles started with the nrc command will use the Eclipse compiler. Only
in case of Java compiler errors, when the compiler output will be shown, will the difference
be apparent. Installer support is planned to include this property automatically when during
NetRexx installation the javac compiler jar is not detected. When compiling using the -time
option, the right compiler name will be indicated.

18the -D option is used on the java command line to specify a system property to the java VM

27

4.3 e netrexx java environment variable

e NetRexxC compile scripts pass the environment variable netrexx java to the Java VM at
start.e compiler selection canbeplaced in the environment andno change to theNetRexxC
script is required. In Windows for example:
set netrexx_java=-Dnrx.compile=ecj

4.4 Interpreting

For completeness, it is confirmed here that interpretative execution also works on a JRE-only
system, and does not require a Java compiler. e NetRexx translator produces the required
bytecode and proxy classes without any need for a Java compiler.

28

5

Using the translator

is section of the document tells you how to use the translator package. It assumes you have
successfully installed Java andNetRexx, and have tested that the hello.nrx testcase can be com-
piled and run, as described in the Testing the NetRexx Installation (section 2.7 on page 22).

e NetRexx translator may be used as a compiler or as an interpreter (or it can do both in
a single run, so parsing and syntax checking are only carried out once). It can also be used as
simply a syntax checker.

When used as a compiler, the intermediate Java source code may be retained, if desired.
Automatic formatting, and the inclusion of comments from the NetRexx source code are also
options.

5.1 Using the translator as a compiler

e installation instructions for the NetRexx translator describe how to use the package to
compile and run a simple NetRexx program (hello.nrx).When using the translator in this way
(as a compiler), the translator parses and checks theNetRexx source code, and if no errorswere
found then generates Java source code. is Java code (which is known to be correct) is then
compiled into bytecodes (.class files) using a Java compiler. By default, the javac compiler in
the Java toolkit is used.

is section explains more of the options available to you when using the translator as a
compiler.

5.2 e translator command

e translator is invoked by running a Java program (class) which is called
org.netrexx.process.NetRexxC

(NetRexxC, for short). is can be run by using the Java interpreter, for example, by the com-
mand:
java org.netrexx.process.NetRexxC

or by using a system-specific script (such asNetRexxC.cmd. or nrc.bat). In either case, the com-
piler invocation is followed by one or more file specifications (these are the names of the files
containing the NetRexx source code for the programs to be compiled).

File specifications may include a path; if no path is given then NetRexxC will look in the
current (working) directory for the file. NetRexxC will add the extension .nrx to input pro-
gram names (file specifications) if no extension was given.

So, for example, to compile hello.nrx in the current directory, you could use any of:

29

java org.netrexx.process.NetRexxC hello

java org.netrexx.process.NetRexxC hello.nrx

NetRexxC hello.nrx

nrc hello

(the first two should always work, the last two require that the system-specific script be
available). e resulting .class file is placed in the current directory, and the .crossref (cross-
reference) file is placed in the same directory as the source file (if there are any variables and
the compilation has no errors).

Here’s an example of compiling twoprograms, oneofwhich is in thedirectoryd:\myprograms:
nrc hello d:\myprograms\test2.nrx

In this case, again, the .class file for each program is placed in the current directory.
Note that when more than one program is specified, they are all compiled within the same

class context. at is, they can see the classes, properties, and methods of the other programs
being compiled, much as though they were all in one file. 19 is allows mutually interde-
pendent programs and classes to be compiled in a single operation. Note that if you use the
package instruction you should also read the more detailedCompiling multiple programs sec-
tion.

On completion, the NetRexxC class will exit with one of three return values: 0 if the com-
pilation of all programs was successful, 1 if there were one or more Warnings, but no errors,
and 2 if there were one or more Errors. e result can be forced to 0 for warnings only with
the -warnexit0 option.

As well as file names, you can also specify various option words, which are distinguished by
the word being prefixed with -. ese flagged words (or flags) may be any of the option words
allowed on theNetRexx options instruction (see theNetRexx languagen documentation, and
the below paragraph). ese options words can be freely mixed with file specifications. To see
a full list of options, execute the NetRexxC command without specifying any files. As this
command states, all options may have prefix ’no’ added for the inverse effect.

5.2.1 Options

ere are a number of options for the translator, some of which can be specified on the trans-
lator command line, and others also in the program source on the option statement. In the
following table, c stands for commandline only, s stands for source and b stands for both.

TABLE 1: Options

Option Meaning Place

-arg words interpret; remaining words are arguments c
-binary classes are binary classes b
-compile compile (default; -nocompile implies -keep) c
-comments copy comments across to generated .java b
-compact display error messages in compact form b
-console display messages on console (default) c

Continued on next page
19e programs do, however, maintain their independence (that is, they may have different options, import, and package in-

structions).

30

Table 1 – continued om previous page
-crossref generate cross-reference listing b
-decimal allow implicit decimal arithmetic b
-diag show diagnostic messages b
-exec interpret with no argument words c
-explicit local variables must be explicitly declared b
-format format output file (pretty-print) b
-java generate Java source code for this program b
-keep keep any completed .java file (as xxx.java.keep) c
-keepasjava keep any completed .java file (as xxx.java) c
-logo display logo (banner) aer starting b
-prompt prompt for new request aer processing c
-savelog save messages in NetRexxC.log c
-replace replace .java file even if it exists b
-sourcedir force output files to source directory b
-strictargs empty argument lists must be specified as () b
-strictassign assignment must be cost-free b
-strictcase names must match in case b
-strictimport all imports must be explicit b
-strictmethods superclass methods are not compared to local methods for best

match
b

-strictprops even local properties must be qualified b
-strictsignal signals list must be explicit b
-symbols include symbols table in generated .class files b
-time display timings c
-trace[n] trace stream [1 or 2], or 0 for NOTRACE b
-utf8 source file is in UTF8 encoding b
-verbose[n] verbosity of progress reports [0-5] b
-warnexit0 exit with a zero returncode on warnings c

Options valid for the options statement and on the commandline

ese are the options that can be used on the options statement:

-binary All classes in this programwill be binary classes. In binary classes, literals are assigned
binary (primitive) or native string types, rather than NetRexx types, and native binary
operations are used to implement operators where appropriate, as described in “Binary
values and operations”. In classes that are not binary, terms in expressions are converted
to the NetRexx string type, Rexx, before use by operators.

-comments Comments from the NetRexx source program will be passed through to the Java
output file (which may be saved with a .java.keep or .java extension by using the -keep
and -keepasjava command options, respectively).

-compact Requests that warnings and error messages be displayed in compact form.is for-
mat is more easily parsed than the default format, and is intended for use by editing envi-
ronments. Each error message is presented as a single line, prefixed with the error token
identification enclosed in square brackets.e error token identification comprises three
words, with one blank separating the words. e words are: the source file specification,

31

the line number of the error token, the column in which it starts, and its length. For
example (all on one line):

[D:\test\test.nrx 3 8 5] Error: The external name

’class’ is a Java reserved word, so would not be

usable from Java programs

Any blanks in the file specification are replaced by a null (’\0’) character. Additional
words could be added to the error token identification later.

-crossref Requests that cross-reference listings of variables be prepared, by class.
-decimal Decimal arithmetic may be used in the program. If nodecimal is specified, the lan-

guage processor will report operations that use (or, like normal string comparison,might
use) decimal arithmetic as an error.is option is intended for performance-critical pro-
grams where the overhead of inadvertent use of decimal arithmetic is unacceptable.

-diag Requests that diagnostic information (for experimental use only) be displayed.ediag
option word may also have side-effects.

-explicit Requires that all local variables must be explicitly declared (by assigning them a type
but no value) before assigning any value to them. is option is intended to permit the
enforcement of “house styles” (but note that the NetRexx compiler always checks for
variables which are referenced before their first assignment, andwarns of variables which
are set but not used).

-format Requests that the translator output file (Java source code) be formatted for improved
readability. Note that if this option is in effect, line numbers from the input file will
not be preserved (so run-time errors and exception trace-backs may show incorrect line
numbers).

-java Requests that Java source code be produced by the translator. If nojava is specified, no
Java source code will be produced; this can be used to save a little time when checking of
a program is required without any compilation or Java code resulting.

-logo Requests that the language processor display an introductory logotype sequence (name
and version of the compiler or interpreter, etc.).

-sourcedir Requests that all .class files be placed in the same directory as the source file from
which they are compiled. Other output files are already placed in that directory. Note
that using this option will prevent the -run command option from working unless the
source directory is the current directory.

-strictargs Requires that method invocations always specify parentheses, even when no ar-
guments are supplied. Also, if strictargs is in effect, method arguments are checked for
usage – a warning is given if no reference to the argument is made in the method.

-strictassign Requires that only exact typematches be allowed in assignments (this is stronger
than Java requirements).is also applies to thematching of arguments inmethod calls.

-strictcase Requires that local and external name comparisons for variables, properties, meth-
ods, classes, and special words match in case (that is, names must be identical to match).

-strictimport Requires that all imported packages and classes be imported explicitly using
import instructions. at is, if in effect, there will be no automatic imports, except those
related to the package instruction.

-strictmethods Superclass methods are not compared to local methods for best match.

32

-strictprops Requires that all properties, including those local to the current class, be qualified
in references.at is, if in effect, local properties cannot appear as simple names butmust
be qualified by this. (or equivalent) or the class name (for static properties).

-strictsignal Requires that all checked exceptions signalled within a method but not caught
by a catch clause be listed in the signals phrase of the method instruction.

-symbols Symbol table information (names of local variables, etc.) will be included in any
generated .class file. is option is provided to aid the production of classes that are easy
to analyse with tools that can understand the symbol table information. e use of this
option increases the size of .class files.

-trace, -traceX If given as -trace, -trace1, or -trace2, then trace instructions are accepted.e
trace output is directed according to the option word: -trace1 requests that trace output
is written to the standard output stream, -trace or -trace2 imply that the output should
be written to the standard error stream (the default).

-utf8 If given, clauses following the options instruction are expected to be encoded using
UTF-8, so all Unicode characters may be used in the source of the program. In UTF-8
encoding, Unicode characters less than ’\u0080’ are represented using one byte (whose
most-significant bit is 0), characters in the range ’\u0080’ through ’\u07FF’ are encoded
as two bytes, in the sequence of bits:

110xxxxx 10xxxxxx

where the eleven digits shown as x are the least significant eleven bits of the character,
and characters in the range ’\u0800’ through ’\uFFFF’ are encoded as three bytes, in the
sequence of bits:

1110xxxx 10xxxxxx 10xxxxxx

where the sixteen digits shown as x are the sixteen bits of the character. If noutf8 is given,
following clauses are assumed to comprise only Unicode characters in the range ’\x00’
through ’\xFF’, with the more significant byte of the encoding of each character being
0. Note: this option only has an effect as a compiler option, and applies to all programs
being compiled. If present on an options instruction, it is checked and must match the
compiler option (this allows processing with or without utf8 to be enforced).

-verbose, -verboseX Sets the “noisiness” of the language processor. e digit X may be any
of the digits 0 through 5; if omitted, a value of 3 is used. e options -noverbose and
verbose0 both suppress all messages except errors and warnings

Options valid on the commandline

e translator also implements some additional optionwords, which control compilation fea-
tures. ese cannot be used on the options instruction20, and are:
-keep e -arg words option is used when interpreting programs, it indicates that aer the

-arg statement, commandline arguments for ther interpreted program follow.
-exec e -execwords option is used when interpreting programs. With this option, no com-

mandline arguments are possible.
-keep keep the intermediate .java file for each program. It is kept in the same directory as the

NetRexx source file as xxx.java.keep, where xxx is the source file name. e file will also
be kept automatically if the javac compilation fails for any reason.

20Although at the moment, there will be no indication of this

33

-keepasjava keep the intermediate .java file for each program. It is kept in the same direc-
tory as the NetRexx source file as xxx.java, where xxx is the source file name. Implies
-replace. Note: use this option carefully in mixed-source projects where you might have
.java source files around.

-nocompile do not compile (just translate). Use this option when you want to use a different
Java compiler.e .javafile for each program is kept in the samedirectory as theNetRexx
source file, as the file xxx.java.keep (where xxx is the source file name).

-noconsole do not display compiler messages on the console (command display screen). is
is usually used with the savelog option.

-savelog write compiler messages to the file NetRexxC.log, in the current directory. is is
oen used with the noconsole option.

-time display translation, javac or ecj compile, and total times (for the sum of all programs
processed).

-run run the resulting Java class as a stand-alone application, provided that the compilation
had no errors.

-warnexit0 Exit the translatorwith returncode0 even ifwarnings are issued.Usefulwithbuild
tools that would otherwise exit a build.

Here are some examples:
java org.netrexx.process.NetRexxC hello -keep -strictargs

java org.netrexx.process.NetRexxC -keep hello wordclock

java org.netrexx.process.NetRexxC hello wordclock -nocompile

nrc hello

nrc hello.nrx

nrc -run hello

nrc -run Spectrum -keep

nrc hello -binary -verbose1

nrc hello -noconsole -savelog -format -keep

Optionwordsmay be specified in lowercase,mixed case, or uppercase. File specifications are
platform-dependent and may be case sensitive, though NetRexxC will always prefer an exact
case match over a mismatch.

Note:e -run option is implemented by a script (such as nrc.bat orNetRexxC.cmd), not
by the translator; some scripts (such as the .bat scripts) may require that the -run be the first
word of the command arguments, and/or be in lowercase. ey may also require that only the
name of the file be given if the -run option is used. Check the commentary at the beginning
of the script for details.

5.3 Compiling multiple programs and using packages

When you specify more than one program for NetRexxC to compile, they are all compiled
within the same class context: that is, they can see the classes, properties, and methods of the
other programs being compiled, much as though they were all in one file.

is allows mutually interdependent programs and classes to be compiled in a single op-
eration. For example, consider the following two programs (assumed to be in your current
directory, as the files X.nrx and Y.nrx):

Listing 5.1: Dependencies

34

1 /∗ X.nrx ∗/
2 class X
3 why=Y null
4

5 /∗ Y.nrx ∗/
6 class Y
7 exe=X null

Each contains a reference to the other, so neither can be compiled in isolation.However, if you
compile them together, using the command:
nrc X Y

the cross-references will be resolved correctly.
e total elapsed timewill be significantly less, too, as the classes on theCLASSPATHneed

to be located only once, and the class files used by the NetRexxC compiler or the programs
themselves will also only be loaded (and JIT-compiled) once.

is example works as you would expect for programs that are not in packages. ere is
a restriction, though, if the classes you are compiling are in packages (that is, they include a
package instruction). NetRexxC uses either the javac compiler or the Eclipse batch compiler
ecj to generate the .class files, and for mutually-dependent files like these; both require the
source files to be in the Java CLASSPATH, in the sub-directory described by the package
instruction.

So, for example, if your project is based on the tree:
D:\myproject
if the two programs above specified a package, thus:

Listing 5.2: Package Dependencies

1 /∗ X.nrx ∗/
2 package foo.bar
3 class X
4 why=Y null
5

6 /∗ Y.nrx ∗/
7 package foo.bar
8 class Y
9 exe=X null

1. You should put these source files in the directory:D:\myproject\foo\bar
2. e directory D:\myproject should appear in your CLASSPATH setting (if you don’t

do this, javac will complain that it cannot find one or other of the classes).
3. You should thenmake the current directory beD:\myproject\foo\bar and then compile

the programs using the command nrc X Y, as above.
With this procedure, you should end up with the .class files in the same directory as the

.nrx (source) files, and therefore also on the CLASSPATH and immediately usable by other
packages. In general, this arrangement is recommended whenever you are writing programs
that reside in packages.

Notes:
1. When javac is used to generate the .class files, no new .class files will be created if any

of the programs being compiled together had errors - this avoids accidentally generating
mixtures of new and old .class files that cannot work with each other.

2. If a class is abstract or is an adapter class then it should be placed in the list before any
classes that extend it (as otherwise any automatically generated methods will not be vis-
ible to the subclasses).

35

6

Programmatic use of the NetRexxC translator

NetRexxC can be used in a program, to compile NetRexxprograms from files, or to compile
from strings in memory.

6.1 Compiling frommemory strings

Programsmay also be compiled frommemory strings by passing an array of strings containing
programs to the translator using these methods:

Listing 6.1: From Memory

1 method main(arg=Rexx, programarray=String[], log=PrintWriter null) static returns int
2 method main2(arg=String[], programarray=String[], log=PrintWriter null) static returns int

Any programs passed as strings must be named in the arg parameter before any programs
contained in files are named. For convenience when compiling a single program, the program
can be passed directly to the compiler as a String with this method:

Listing 6.2: With String argument

1 method main(arg=Rexx, programstring=String, logfile=PrintWriter null) constant returns int

Here is an example of compiling a NetRexx program from a string in memory:

Listing 6.3: Example of compiling from String

1 import org.netrexx.process.NetRexxC
2 program = "say 'hello there via NetRexxC'"
3 NetRexxC.main("myprogram",program)

Other uses of the NetRexxA API are beyond the scope of this uick Start Guide and are
documented in the Programming Guide.

37

7

Using the prompt option

e prompt option may be be used for interactive invocation of the translator. is requests
that the processor not be ended aer a file (or set of files) has been processed. Instead, you will
be prompted to enter a new request. is can either repeat the process (perhaps if you have
altered the source in the meantime), specify a new set of files, or alter the processing options.
On the second and subsequent runs, the processor will re-use class information loaded on the
first run. Also, the classes of the processor itself (and the javac compiler, if used) will not need
to be verified and JIT-compiled again. ese savings allow extremely fast processing, as much
as fiy times faster than the first run for small programs.
When you specify -prompt on a NetRexxC command, the NetRexx program (or programs)
will initially be processed as usual, according to the other flags specified. Once processing is
complete, you will be prompted thus:
Enter new files and additional options, ’=’ to repeat, ’exit’ to end:

.
At this point, you may enter:
. One or more file names (with or without additional flags): the previous process, modified

by any new flags, is repeated using the source file or files specified. Files named previously
are not included in the process (unless they are named again in the new list of names).. Additional flags (without any new files): the previous process, modified by the new flags, is
repeated, on the same files as before. Note that flags are accumulated; that is, flags are not
reset to defaults between prompts.. e character = this simply repeats the previous process, on the same file or files (which
may have had their contents changed since the last process) and using the same flags.is is
especially useful when you simply wish to re-compile (or re-interpret, see below) the same
file or files aer editing.. e word exit, which causes NetRexxC to cease execution without any more prompts.. Nothing (just press Enter or the equivalent) – usage hints, including the full list of possible
options, etc., are displayed and you are then prompted again.

39

7.1 Using the translator as an Interpreter

In addition to being used as a compiler, the translator also includes a trueNetRexx interpreter,
allowingNetRexx programs to be run on the Java 2 (1.2) platformwithout needing a compiler
or generating .class files.
e startup time for running programs can therefore be significantly reduced as no Java source
code or compilation is needed, and also the interpreter can give better runtime support (for
example, exception tracebacks are localized to the programs being interpreted, and the loca-
tion of an exception will be identified oen to the nearest token in a term or expression).
Further, in a single run, a NetRexx program can be both interpreted and then compiled. is
shares the parsing between the twoprocesses, so the .classfile is producedwithout the overhead
of re-translating and re-checking the source.

7.1.1 Interpreting programs

e NetRexx interpreter is currently designed to be fully compatible with NetRexx programs
compiled conventionally. ere are some minor restrictions (see section 11 on page 49), but
in general any program that NetRexxC can compile without error should run. In particular,
multiple programs, threads, event listeners, callbacks, and Minor (inner) classes are fully sup-
ported.
To use the interpreter, use theNetRexxC command as usual and specify either of the following
command options (flags):

-exec aerparsing, execute (interpret) theprogramorprogramsby calling the staticmain(String[])
method on the first class, with an empty array of strings as the argument. (If there is no
suitablemainmethod an error will be reported.)

-arg words... as for -exec, except that the remainder of the commandargument string passed to
NetRexxCwill be passed on to themainmethod as the array of argument strings, instead
of being treated as file specifications or flags. Specifying -noarg is equivalent to specifying
-exec; that is, an empty array of argument strings will be passed to themainmethod (and
any remaining words in the command argument string are processed normally).

When any of -exec, -arg, or -noarg is specified, NetRexxC will first parse and check the pro-
grams listed on the command. If no error was found, it will then run them by invoking the
main method of the first class interpretively.
Before the run starts, a line similar to:

===== Exec: hello =====

will be displayed (you can stop this and other progress indicators being displayed by using the
-verbose0 flag, as usual).
Finally, aer interpretation is complete, the programs are compiled in the usual way, unless

-nojava21 or -nocompile was specified.
For example, to interpret the hello world program without compilation, the command:

nrc hello -exec -nojava

can be used. If you are likely to want to re-interpret the program (for example, aer changing
the source file) then also specify the -prompt flag, as described above. is will give very much

21e -nojava flag stops any Java source being produced, so prevents compilation.is flag may be used to force syntax-checking
of a program while preventing compilation, and with optional interpretation.

40

better performance on the second and subsequent interpretations.
Similarly, the command:
nrc hello -nojava -arg Hi Fred!

would invoke the program, passing the words Hi Fred! as the argument to the program (you
might want to add the line say arg to the program to demonstrate this).
You can also invoke the interpreter directly from another NetRexx or Java program, as de-
scribed in e NetRexx Programming Guide.

7.2 Interpreting –Hints and Tips

When using the translator as an interpreter, you may find these hints useful:
. If you can, use the -prompt command line option (see above). is will allow very rapid

re-interpretation of programs aer changing their source.. If you don’t want the programs to be compiled aer interpretation, specify the -nojava op-
tion, unless you want the Java source code to be generated in any case (in which case specify
-nocompile, which implies -keep).. By default, NetRexxC runs fairly noisily (with a banner and logo display, and progress of
parsing being shown). To turn off these messages during parsing (except error reports and
warnings) use the -verbose0 flag.. If you are watching NetRexx trace output while interpreting, it is oen a good idea to use
the -trace1 flag. is directs trace output to the standard output stream, which will ensure
that trace output and other output (for example, from say instructions) are synchronized.. Use the NetRexx exit instruction (rather than the System.exit() method call) to end win-
dowing (AWT) applications which are to be interpreted. is will allow the interpreter to
correctly determine when the application has ended. is is discussed further in the

7.3 Interpreting – Performance

einitial release of the interpreter, in theNetRexx 2.0 reference implementation, directly and
efficiently interprets NetRexx instructions. However, to assure the stability of the code, terms
and expressions within instructions are currently fully re-parsed and checked each time they
are executed.is has the effect of slowing the executionof terms and expressions significantly;
performance measurements on the initial release are therefore unlikely to be representative of
later versions that might be released in the future.
For example, at present a loop controlled using loop for 1000 will be interpreted around 50
times faster than a loop controlled by loop i=1 to 1000, even in a binary method, because the
latter requires an expression evaluation each time around the loop.

41

8

Installing on an IBMMainframe

8.0.1 EBCDIC Systems: z/OS, z/VM

Prerequisites for z/OS

Realistically, to use NetRexx on z/OS youmust have access to anOMVS prompt (z/OSUnix
Systems Services22 shell for 3270 terminals), have access using ssh or telnet, and Java must
be installed. While this access used to be scarce, more and more installations have this as a
standard. Of course, if you are systems programming staff you can arrange for most of this
yourself, and if you are not, you need to befriend the staff that can.

Access to the OMVS command is regulated through a security profile, so your userid must
be in the right RACF,ACF2 orTOPSECRET class. Youwill need a home directory specified
in thisOMVS class, and this directory needs to bemounted, preferably as a permanentmount.

If this is arranged and working, you need to verify if there is a Java runtime available. Test
this with the command

java -version

Any version of Java will do, although newer is better. Generally, versions from 1.4 to 1.6 are
found on mainframes nowadays. If the command is not found, don’t despair; it might be
installed but it may be not found on the $PATH variable. is can be arranged for in the
.profile or .bash profile file in your home direcory. is variable works just as in other ver-
sions of Unix23, see page 21. If Java is not installed, it is time someone did it; there are SMP/E
and non-SMP/E installers (using a shell script) available - the latter comes in handy for a quick
install.

Uploading the NetRexxtranslator jar

e NetRexx binaries are identical for all operating systems; the same NetRexxC.jar runs ev-
erywhere24. However, during installation it is important to ensure that binary files are treated
as binary files, whereas text files (such as the accompanying HTML and sample files) need to
be translated to the local code page as required.

e simplest way to do this is to first install the package on a workstation, following the
instructions above, then copy or FTP the files you need to the mainframe. e files need to
be placed in an HFS to be used by OMVS; FTP can directly places the files in an HFS home
directory, while IND$FILE can place them into a traditional data set.

Specifically:

22IBMManuals SA22-7801-12 “Unix System Services User’s Guide” and SA22-7802-12 “Unix System Services Reference”
23z/OS is officially a version of Unix, this in addition to everything that it already was
24Many thanks to Mark Cathcart and John Kearney for contributing the details to the original version of this section.

43

. e NetRexxC.jar file should be copied as-is, that is, use FTP or other file transfer with the
BINARYoption.eCLASSPATH should be set to include thisNetRexxC.jar file.When
using IND$FILE as a file transfer mechanism to a traditional MVS data set, make sure it is
allocated as a load library with lrecl 0 and a large blocksize.. Other files (documentation, etc.) should be copied as Text (that is, they will be translated
fromASCII toEBCDIC).is canbe doneby specifying typeTEXTon thep command,
or use the ASCII CRFL option on the IND$FILE command.
In general, files with extension .au, .class, .gif, .jar, or .zip are binary files; all others are text

files. Youmayopt to leave the additional files on aworkstation, themainframe really onlyneeds
the .jar file, NetRexxC.jar (or NetRexxR.jar if you are only planning to run already compiled
classfiles). Setting the classpath might look like this on a recent z/OS:
JAVA_HOME=/opt/ibm/java-s390x-60

export JAVA_HOME

CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar

CLASSPATH=$CLASSPATH:$JAVA_HOME/jre/lib/s390x/default/jclSC160/vm.jar

CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar

export CLASSPATH

Note that you are free to put theNetRexxC.jar archive in any location, as long as the classpath
correctly refers to it. e vm.jar has to be on the classpath because otherwise Object.class will
not be found by the NetRexxC translator.

When this is done, we can run some tests with it and see that everything works. Edit a pro-
gram source file with oedit, which works just like the ISPF/PDF editor and compile or inter-
pret it like we do on other versions of Unix. NetRexxprograms can accessHFS (and ZFS) files
the same way it does on Windows and Unix, and also network programming with TCP/IP
works in the same way from OMVS.

For a description how NetRexxcan be used in a traditional MVS workload environment,
withbatch JCLandusingVSAMand sequentials data set andPDSdirectories, you are referred
to theNetRexx Programming Guide).

8.0.2 z/Linux

Installing on z/Linux is straightforward. Make sure the NetRexxC.jar is copied untranslated
to the z/Linux file systemusing p, scp or some other file transfer technology, and take into ac-
count that the IBMJVMhasObject.class in the vm.jar archive.At themoment, if not installed
already, Java for z/Linux is a free download from the IBMwebsite.With z/Linux versions that
have a VNC server installed and available, Java Graphical User Interfaces (GUI) can be used
without installing X client soware.

44

9

Installing and running on the Raspberry Pi

9.0.3 Running NetRexx in 10 minutes on the Raspberry Linux/ARM system

is install guide is different, in the sense that it describes the entire setup of the Raspberry Pi
system, including NetRexx.

Linux on ARM

e Raspberry Pi is an inexpensive computer, containing an ARM architecture CPU on a
board the size of a credit card, which sells for $35. It boots from an SD card, the kind you have
in your digital camera. In a few small steps you can be up and runningwith Java andNetRexx.
. Use an SD card of suitable size (and known brand)25, at least 2GB but 8 or 16 is advisable. Download the raspbian image from http://www.raspberrypi.org/downloads. Hook up an SD Card writer (the one in your digital camera probably also works) to the

USB port of your computer. While taking good carenot tooverwrite yourharddisk, usedd or, onWindows,Win32DiskManager
to write the image to the SD card. is takes a minute. Good instructions are at http:

//elinux.org/RPi_Easy_SD_Card_Setup. Now unpack the Raspberry Pi, connect the hdmi to a tv or via an hdmi-monitor cable to a
monitor, connect a keyboard (mouse can be attached later, if at all), and connect the mini-
usb adapter to the power socket. I used a spare plug from an old phone. It boots and gives
a lot of Unix messages. e first boot is not very quick. Connect an ethernet cable to your
router26.. You land in the raspi-config system. Resize the partitions to fill your SD card. Change the
password for the pi user, set the default locale, and enable ssh. You can worry with the other
options later.. Note the IP address that the system received from DHCP. Login fromanother system, for exampleusingPutty (forWindows) oruse sshpi@your.ip.add.ress
(these are the numbers of an IP4 address). Download the ARMhf Java JDK-8 from Oracle, and untar it.
-v /opt/java

tar xvzf ~/jdk-8-ea-b36e-linux-arm-hflt-29_nov_2012.tar.gz (the filename changed)

sudo mv -v ~/jdk1.8.0 /opt/java

sudo update-alternatives --install ”/usr/bin/java” ”java” ”/opt/java/jdk1.8.0/bin/java” 1

sudo update-alternatives --set java
25Not all cards work; the large brands do. SanDisk Ultra SDHC 16Gig cards are verified to work.
26e entire installation can be done without connection a monitor if so desired. You can find the Raspberry on your network by

using nmap. Be sure to re-enable ssh when running raspi-config.

45

http://www.raspberrypi.org/downloads
http://elinux.org/RPi_Easy_SD_Card_Setup
http://elinux.org/RPi_Easy_SD_Card_Setup

. Use scp or p (binary mode) to transmit the NetRexxC.jar to the system, or install the
whole NetRexx package. ere is an unzip command available. Set path and classpath as indicated earlier, and runNetRexx. Youhave the option to develop
and compile on the Raspberry, or just upload class files to it.

46

10

Troubleshooting

Can’t find class org.netrexx.process.NetRexxC probably means that the NetRexxC.jar file
has not been specified in your CLASSPATH setting, or is misspelled, or is in the wrong
case, or (for Java 1.2 or later) is not in the Java \lib\ext directory. Note that in the latter
case there are two lib directories in the Java tree; the correct one is in the Java Runtime
Environment directory (jre). e Setting the CLASSPATH section contains informa-
tion on setting the CLASSPATH.

+++ Error:e class ’java.lang.Object’ cannot be found. You are running with an IBM
JVM or JRE. e java.lang.Object class is packaged in the file vm.jar, which needs to be
on your CLASSPATH

Can’t find class hello may mean that the directory with the hello.class file is not in your
CLASSPATH (you may need to add a ?.;’ to the CLASSPATH, signifying the current
directory), or either the filename or name of the class (in the source) is spelled wrong
(the java command is [very] case-sensitive). Note that the name of the class must not
include the .class extension.

Exception ... NoClassDefFoundError: sun/tools/javac/Main is indicates that you are
running Java 1.2 or later but did not add the Java tools to your CLASSPATH (hence
Java could not find the javac compiler). See the Installing for Java 1.2+ section for more
details, and an alternative action. Alternatively, you may be trying to use NetRexx under
Visual J++, which needs a different procedure. You can check whether javac is available
and working by issuing the javac command at a command prompt; it should respond
with usage instructions.

Error opening the file ’hello.java’ [C:\Program Files(86) \javajdk1 7.0.05 jrebinhello.java
(Access is denied)] - your userid needs write authorization on the current directory.
Please copy the source file to a writeable directory and try again.

Extra blanks You have an extra blank or two in the CLASSPATH. Blanks should only occur
in themiddle of directory names (and even then, you probably need some double quotes
around the SET command or the CLASSPATH segment with the blank). e JVM is
sensitive about this.

Permission Denied You are trying theNetRexxC.sh or nrc scripts under Linux or otherUnix
system, and are getting a Permission denied message. is probably means that you have
not marked the scripts as being executable. To do this, use the chmod command, for
example: chmod 751 NetRexxC.sh.

No such file You are trying theNetRexxC.sh or nrc scripts under Linux or otherUnix system,
and are getting a No such file or syntax error message from bash. is probably means
that you did not use the unzip -a command to unpack the NetRexx package, so CRLF
sequences in the scripts were not converted to LF.

47

You didn’t install on a file system that supports long file names (for example, on OS/2 or
Windows you should use an HPFS or FAT32 disk or equivalent). Like most Java appli-
cations, NetRexx uses long file names.

Downlevel zip You have a down-level unzip utility, or changed the name of theNetRexxC.jar
file so that it does not match the spelling in the classpath. For example, check that the
name of the file NetRexxC.jar’ is exactly that, with just three capital letters.

You have only the Java runtime installed, and not the toolkit. If the toolkit is installed, you
should have a program called javac on your computer. You can check whether javac is
available and working by issuing the javac command at a command prompt; it should
respond with usage information.

out of environment space when trying to setCLASSPATHunderWin9x-DOScanbe reme-
died by adding /e:4000 to the ?Cmd line’ entry for theMS-DOS prompt properties (try
command /? for more information).

java.lang.OutOfMemoryError when running the compiler probably means that the maxi-
mum heap size is not sufficient. e initial size depends on your Java virtual machine;
you can change it to (say) 24 MegaBytes by setting the environment variable:

SET NETREXX_JAVA=-Xmx24M

e NetRexxC.cmd and .bat files add the value of this environment variable to the op-
tions passed to java.exe. If you’re not using these, modify your java command or script
appropriately.

Down-level Java You have a down-level version of Java installed. NetRexxC will run only on
Java version1.1.2 (and later versions). You can check the versionof Java youhave installed
using the command
java -version’

applet viewer needed Some of the samples must be viewed using the Java toolkit applet-
viewer or a Java-enabled browser. Please see the hypertext pages describing these for
detailed instructions. In general, if you see a message from Java saying:

void main(String argv[]) is not defined

this means that the class cannot be run using just the ?java’ command; it must be run
from another Java program, probably as an applet.

48

11

Current Restrictions

eNetRexx translator is now functionally complete, thoughwork continues on usability and
performance improvements. As of this version there are still a number of restrictions, listed be-
low. Please note that the presence of an item in this section is not a commitment to remove
a restriction in some future update; NetRexx enhancements are dependent on on-going re-
search, your feedback, and available resources. You should treat this list as a “wish-list” (and
please send in your wishes, preferable as an RFE on the http://kenai.com/projects/netrexx
website).

11.1 General restrictions

1. e translator requires that Java 1.1.2 or later be installed. To use the interpreter func-
tions, at least Java 1.2 (Java 2) is required. Note that Java 6 is the current version, so the
chance that you will be impacted by this is minimal.

2. Certain forward references (in particular, references tomethods later in a program from
the argument list of an earlier method) are not handled by the translator. For these, try
reordering the methods.

11.2 Compiler restrictions

e following restrictions are due to the use of a translator for compiling, and would probably
only be lied if a direct-to-bytecodes NetRexx compiler were built. Externally-visible names
(property, method, and class names) cannot be Java reserved words (you probably want to
avoid these anyway, as people who have to write in Java cannot refer to them), and cannot
start with “$0”.

1. ere are various restrictions on naming and the contents of programs (the first class
name must match the program name, etc.), required to meet Java rules.

2. e javac compiler requires that mutually-dependent source files be on the CLASS-
PATH, so it can find the source files. NetRexxC does not have this restriction, but when
using javac for the final compilation you will need to follow the convention described in
the Compiling multiple programs and using packages section (see page 23).

3. e symbols option (which requests that debugging information be added to gener- ated
.class files) applies to all programs compiled together if any of them specify that option.

4. Some binary floating point underflows may be treated as zero instead of being trapped
as errors.

49

http://kenai.com/projects/netrexx

5. When trace is used, side-effects of calls to this() and super() in constructors may be seen
before the method and method call instructions are traced – this is because the Java lan-
guage does not permit tracing instructions to be added before the call to this() or super().

6. e results of expressions consisting of the single term “null” are not traced.
7. When a minor (inner) class is explicitly imported, its parent class or classes must also be

explicitly imported, or javac will report that the class cannot be found.
8. If you have a loop construct with a large number (perhaps hundreds) of instructions

inside it, running the compiled class may fail with an illegal target of jump or branch
verification error (or, under Java 1.1, simply terminate execution aer one iteration of
the loop). is is due to a bug in javac one workaround is to move some of the code out
of the loop, perhaps into a private method. (e following problem may occur in larger
methods, with Java 1.1.2; it seems to have been fixed in later versions of Java): NetRexxC
does not restrict the number of local variables used or generated.However, the 1.1.2 javac
compiler fails with unrelated error messages (such as statement unreachable or variable
may be uninitialized) if asked to handle more than 63 local variables.

11.3 Interpreter restrictions

Interpreting Java-based programs is complex, and is constrained by various security issues and
the architecture of the JavaVirtualMachine. As a result, the following restrictions apply; these
will not affect most uses of the interpreter.

1. For interpretation to proceed, when any of –exec, –arg, or –noarg is specified, you must
be running a Java 2 JVM (Java Virtual Machine). at is, the command “java –version”
should report a version of 1.2 or later. Parsing and compilation, however, only require
Java 1.1.2.

2. Certain “built-in” Java classes (notably java.lang.Object, java.lang.String, and java.lang.rowable)
are constrained by the JVM in that they are assumed to be pre-loaded. An attempt to
interpret them is allowed, but will cause the later loading of any other classes to fail with
a class cast exception. Interpreted classes have a stub which is loaded by a private class
loader. is means that they will usually not be visible to external (non-interpreted)
classes which attempt to find them explicitly using reflection, Class.forName(), etc. In-
stead, these calls may find compiled versions of the classes from the classpath. erefore,
to find the “live” classes being interpreted, use the NetRexxA interpreter API interface
(described below).

3. An interpreter cannot completely emulate the actions taken by the Java VirtualMachine
as it closes down.erefore, special rules are followed to determine when an application
is assumed to have ended when interpreting (that is, when any of –exec, –arg, or –noarg
is specified):

4. If the application being interpreted invokes the exitmethod of the java.lang.System class,
the run ends immediately (even if –promptwas specified).e call cannot be intercepted
by the interpreter, and is assumed to be an explicit request by the application to terminate
the process and release all resources. In other cases, NetRexxC has to decide when the
application ends and hence when to leaveNetRexxC (or display the prompt, if –prompt
was specified). e following rules apply:
(a) If any of the programs being interpreted contains the NetRexx exit instruction and

the application leaves extra user threads active aer themainmethod ends thenNet-

50

RexxC will wait for an exit instruction to be executed before assuming the applica-
tion has ended and exiting (or re-prompting). Otherwise (that is, there are no extra
threads, or no exit instruction was seen) the application is assumed to have ended
as soon as the main method returns and in this case the run ends (or the prompt
is shown) immediately. is rule allows a program such as “hello world” to be run
aer a windowing application (which leaves threads active) without a deadlocked
wait. ese rules normally “do the right thing”. Applications which create windows
may, however, appear to exit prematurely unless they use the NetRexx exit instruc-
tion to end their execution, because of the last rule.

(b) Applications which include both thread creation and an exit instruction which is
never executed will wait indefinitely and will need to be interrupted by an external
“break” request, or equivalent, just as they would if run from compiled classes.

(c) Interpreting programs which set up their own security managers may prevent cor-
rect operation of the interpreter.

51

Index

Rexx, 10

arg, 10, 37

case, 3

catch, 14

class, 8, 10, 14, 35

constant, 37

digits, 4

do, 3, 14

else, 2, 3

end, 3, 7, 8, 10, 14, 15

exit, 3, 7

extends, 10, 14

for, 10

if, 2, 3, 7

import, 37

iterate, 7

loop, 3, 7, 8, 10, 14

method, 7, 9�11, 14, 37

numeric, 4

otherwise, 3

package, 35

parse, 6, 7, 11

return, 7, 9

returns, 9, 37

say, iii, 1�12, 14, 15

select, 3

set, 7

static, 7, 10, 37

super, 10

then, 2, 3, 7

this, 9

to, 3, 8, 14

trace, 11, 12

when, 3

while, 7

arg option, 40

arg words option, 33

binary option, 31

command, for compiling, 29

comments option, 31

compact option, 31

compiling, NetRexx programs, 29

compiling,interactive, 39

compiling,multiple programs, 34

compiling,options, 30

compiling,packages, 35

completion codes, from translator, 30

crossref option, 32

decimal option, 32

diag option, 32

EBCDIC installations, 43

exec option, 33, 40

explicit option, 32

file specifications, 29

flag, binary, 31

flag, nocompile, 34

flag, noconsole, 34

flag, run, 34

flag, savelog, 34

flag, time, 34

flag,arg, 40

flag,arg words, 33

flag,comments, 31

flag,compact, 31

flag,crossref, 32

flag,decimal, 32

flag,diag, 32

flag,exec, 33, 40

flag,explicit, 32

flag,format, 32

flag,java, 32

flag,keep, 33

flag,keepasjava, 33

flag,logo, 32

flag,nocompile, 40

flag,nojava, 40

flag,prompt, 39

flag,sourcedir, 32

flag,strictargs, 32

flag,strictassign, 32

flag,strictcase, 32

flag,strictimport, 32

flag,strictmethods, 32

flag,strictprops, 32

flag,strictsignal, 33

flag,symbols, 33

flag,trace, traceX, 33

flag,trace1, 41

53

flag,utf8, 33

flag,verbose, 40

flag,verbose, verboseX, 33

flag,warnexit0, 34

flags, 30

format option, 32

installation,EBCDIC systems, 43

installation,Raspberri Pi, 45

installation,runtime only, 21

interactive translation, 39

interactive translation,exiting, 39

interactive translation,repeating, 39

interpreting,hints and tips, 41

interpreting,NetRexx programs, 40

interpreting,performance, 41

jar command, used for unzipping, 18

java option, 32

keep option, 33

keepasjava option, 33

logo option, 32

NetRexx package, 18

netrexx java (environment variable, 28

NetRexxC, class, 29

NetRexxC, scripts, 29

NetRexxF.jar, 19

NetRexxR runtime classes, 21

nocompile option, 34, 40

noconsole option, 34

nojava option, 40

nrc scripts, 29

option words, 30

option, binary, 31

option, nocompile, 34

option, noconsole, 34

option, run, 34

option, savelog, 34

option, time, 34

option,arg, 40

option,arg words, 33

option,comments, 31

option,compact, 31

option,crossref, 32

option,decimal, 32

option,diag, 32

option,exec, 33, 40

option,explicit, 32

option,format, 32

option,java, 32

option,keep, 33

option,keepasjava, 33

option,logo, 32

option,nocompile, 40

option,nojava, 40

option,prompt, 39

option,sourcedir, 32

option,strictargs, 32

option,strictassign, 32

option,strictcase, 32

option,strictimport, 32

option,strictmethods, 32

option,strictprops, 32

option,strictsignal, 33

option,symbols, 33

option,trace, traceX, 33

option,trace1, 41

option,utf8, 33

option,verbose, 40

option,verbose, verboseX, 33

option,warnexit0, 34

package/NetRexx, 18

packages, compiling, 35

performance, while interpreting, 41

projects, compiling, 35

prompt option, 39

Raspberry Pi, 45

return codes, from translator, 30

run option, 34

runtime,installation, 21

savelog option, 34

scripts, NetRexxC, 29

scripts, nrc, 29

sourcedir option, 32

strictargs option, 32

strictassign option, 32

strictcase option, 32

strictimport option, 32

strictmethods option, 32

strictprops option, 32

strictsignal option, 33

symbols option, 33

time option, 34

trace, traceX option, 33

trace1 option, 41

unpacking, 18

using the translator, 29

using the translator, as a Compiler, 29

using the translator,as an Interpreter, 40

utf8 option, 33

verbose option, 40

verbose, verboseX option, 33

warnexit0 option, 34

zip files, unpacking, 18

54

9 789081 909020

ISBN 978-90-819090-2-0

55

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	Requirements
	A Quick Tour of NetRexx
	NetRexx programs
	Expressions and variables
	Control instructions
	NetRexx arithmetic
	Doing things with strings
	Parsing strings
	Indexed strings
	Arrays
	Things that aren’t strings
	Extending classes
	Tracing
	Binary types and conversions
	Exception and error handling
	Summary and Information Sources

	Installation
	Unpacking the NetRexx package
	The NetRexx packages
	First steps with NetRexx
	Installing the NetRexx Translator
	Installing just the NetRexx Runtime
	Setting the CLASSPATH
	Testing the NetRexx Installation

	Unicode
	Running on a JRE-only environment
	Eclipse Batch Compiler
	The nrx.compiler property
	The netrexx_java environment variable
	Interpreting

	Using the translator
	Using the translator as a compiler
	The translator command
	Compiling multiple programs and using packages

	Programmatic use of the NetRexxC translator
	Compiling from memory strings

	Using the prompt option
	Using the translator as an Interpreter
	Interpreting – Hints and Tips
	Interpreting – Performance

	Installing on an IBM Mainframe
	Installing and running on the Raspberry Pi
	Troubleshooting
	Current Restrictions
	General restrictions
	Compiler restrictions
	Interpreter restrictions

	Index

