
NetRexx
QuickStart Guide
Mike Cowlishaw and RexxLA

Version 3.11-GA of December 22, 2020

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-2-0

Publication Data

©Copyright The Rexx Language Association, 2011- 2020

All originalmaterial in this publication is published under theCreativeCommons - ShareAlike 3.0 License
as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14,
1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands.

This edition is registered under ISBN 978-90-819090-2-0

9 789081 909020

ISBN 978-90-819090-2-0

I

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

TheNetRexx Programming Series i

Typographical conventions iii

Introduction iv

1 A Quick Tour of NetRexx 1

1.1 NetRexx programs 1

1.2 Expressions and variables 2

1.3 Control instructions 3

1.4 NetRexx arithmetic 4

1.5 Doing things with strings 5

1.6 Parsing strings 6

1.7 Indexed strings 7

1.8 Arrays 8

1.9 Things that aren’t strings 9

1.10 Extending classes 11

1.11 Tracing 12

1.12 Binary types and conversions 14

1.13 Exception and error handling 16

1.14 Summary and Information Sources 16

2 Requirements 17

3 Installation 18

3.1 Unpacking the NetRexx package 18

3.2 The NetRexx packages 19

3.3 First steps with NetRexx 20

3.4 Installing the NetRexx Translator 20

3.5 Installing just the NetRexx Runtime 21

3.6 Setting the CLASSPATH 21

3.7 Testing the NetRexx Installation 22

II

4 Using a Docker image or the Native Compilers for JVM releases after 9 25

4.1 Which to choose 25

4.2 Native executables 25

4.3 Docker Image 26

5 The NetRexxWorkspace - nrws 28

5.1 Installation 28

5.2 Starting nrws 28

5.3 Exit nrws 29

5.4 Exploring the NetRexx language 29

5.5 Arithmetic Expressions 29

5.6 Some Types 30

5.7 Symbols, Variables, Assignments, and Declarations 30

5.8 Conversion 30

5.9 Calling Functions 31

5.10 Long Lines 31

5.11 Numbers 32

5.12 Data Structures 32

5.13 Expanding to Higher Dimensions 33

5.14 Writing Your Own Functions 33

5.15 A Typical Session 34

5.16 Running Pipelines 34

5.17 System Commands 35

5.18 Input Files and NetRexx Files 35

5.19 Input Files 35

5.20 The workspace.input File 36

5.21 The nrws.properties File 37

5.22 The nrws.history file(s) 37

5.23 Workspace for NetRexx System Commands 37

5.24 Introduction 37

5.25)cd 38

5.26)clear 39

5.27)display 39

5.28)frame 40

5.29)help 41

5.30)history 42

5.31)import 43

5.32)numeric 43

III

5.33)options 44

5.34)package 45

5.35)pquit 45

5.36)quit 45

5.37)read 46

5.38)set 46

5.39)show 49

5.40)synonym 49

5.41)system 50

5.42)trace 50

5.43)use 51

5.44)what 51

6 Unicode 53

7 Running on a JRE-only environment 54

7.1 Eclipse Batch Compiler 54

7.2 The -ecj and -javac translator options 54

7.3 The netrexx_java environment variable 55

7.4 Passing options to the Java Compiler 55

7.5 Interpreting 55

8 Using the translator 56

8.1 Using the translator as a compiler 56

8.2 The translator command 56

8.3 Compiling multiple programs and using packages 62

9 Programmatic use of the NetRexxC translator 64

10 Using the prompt option 65

11 Using the translator as an Interpreter 66

11.1 Interpreting – Hints and Tips 67

11.2 Interpreting – Performance 67

12 Installing on an IBMMainframe 69

13 ARMABI Remarks 72

14 Installing and running on the BeagleBone Black 73

15 Installing and running on the Raspberry Pi 75

IV

16 Troubleshooting 76

17 Current Restrictions 78

17.1 General restrictions 78

17.2 Compiler restrictions 78

17.3 Interpreter restrictions 79

Index 81

V

TheNetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists the
other publications in this series, and their roles. These books can be ordered in conve-
nient hardcopy and electronic formats from the Rexx Language Association.

i

Quick Start Guide This guide is meant for an audience
that has done some programming and
wants to start quickly. It starts with a
quick tour of the language, and a sec-
tion on installing the NetRexx transla-
tor and how to run it. It also contains
help for troubleshooting if anything in
the installation does not work as de-
signed, and states current limits and re-
strictions of the open source reference
implementation.

Programming Guide The Programming Guide is the one
manual that at the same time teaches
programming, shows lots of examples
as they occur in the real world, and ex-
plains about the internals of the transla-
tor and how to interface with it.

Language Reference Referred to as the NRL, this is the for-
mal definition for the language, docu-
menting its syntax and semantics, and
prescribing minimal functionality for
language implementors. It is the defini-
tive answer to any question on the lan-
guage, and as such, is subject to ap-
proval of the NetRexx Architecture Re-
view Board on any release of the lan-
guage (including its NRL).

Pipelines for NetRexx QuickStart Guide The Data Flow oriented companion to
NetRexx, with its z/VM CMS Pipelines
compatible syntax, is documented in
this manual. It discusses installing and
running Pipes for NetRexx, and has
ample examples of defining your own
stages in NetRexx.

ii

Typographical conventions

In general, the following conventions have been observed in the NetRexx publications:
. Body text is in this font. Examples of language statements are in a bold type. Variables or strings as mentioned in source code, or things that appear on the con-

sole, are in a typewriter type. Items that are introduced, or emphasized, are in an italic type. Included program fragments are listed in this fashion:

Listing 1: Example Listing
1 -- salute the reader
2 say 'hello reader'

. Syntax diagrams take the form of so-called Railroad Diagrams to convey structure,
mandatory and optional items

Properties

properties
�� ��

�visibility

�

�
�modifier

�

�
�deprecated

�� �
�

�
�unused

�� �
�

iii

Introduction

This document is the Quick Start Guide for the reference implementation of NetRexx.
NetRexx is a human-oriented programming language which makes writing and using
Java1 classes quicker and easier thanwriting in Java. It is part of the Rexx language family,
under the governance of the Rexx Language Association.2 NetRexx has been developed
andwasmade available as a free download by IBM since 1995 and is free and open source
since June 8, 2011.
In this Quick Start Guide, you’ll find information on

1. How easy it is to write for the JVM: A Quick Tour of NetRexx
2. Installing NetRexx
3. Using the NetRexx translator as a compiler, interpreter, or syntax checker
4. Troubleshooting when things do not work as expected
5. Current restrictions.

The NetRexx documentation and software are distributed by The Rexx Language Asso-
ciation under the ICU license. For the terms of this license, see the included LICENSE
file in this package.
For details of the NetRexx language, and the latest news, downloads, etc., please see
the NetRexx documentation included with the package or available at: http://www.
netrexx.org.

The highest Java version that is supported in this version, 3.09, is Java 8. Higher versions
are not yet supported due to changes in Java, including incompatibilities introducedwith
the Java module system. Workarounds are available for higher Java versions; be sure to
read chapter 4 for information about these.

1Java is a trademark of Oracle, Inc.
2http.www.rexxla.org

iv

http://www.netrexx.org
http://www.netrexx.org
http.www.rexxla.org

1

AQuick Tour of NetRexx

This chapter summarizes the main features of NetRexx, and is intended to help you
start using it quickly. It is assumed that you have some knowledge of programming in a
language such as Rexx, C, BASIC, or Java, but extensive experience with programming
is not needed.
This is not a complete tutorial, though – think of it more as a taster; it covers the main
points of the language and shows some examples you can try or modify. For full details
of the language, consult the NetRexx Programmer’s Guide and the NetRexx Language
Definition documents.

1.1 NetRexx programs

The structure of a NetRexx program is extremely simple. This sample program, “toast”,
is complete, documented, and executable as it stands:

Listing 1.1: Toast
1 /* This wishes you the best of health. */
2 say 'Cheers!'

This program consists of two lines: the first is an optional comment that describes the
purpose of the program, and the second is a say instruction. say simply displays the
result of the expression following it – in this case just a literal string (you can use either
single or double quotes around strings, as you prefer). To run this program using the
reference implementation of NetRexx, create a file called toast.nrx and copy or paste
the two lines above into it. You can then use the NetRexxC Java program to compile it:

java org.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to run it:

java toast

You may also be able to use the netrexxc or nrc command to compile and run the pro-
gram with a single command (details may vary – see the installation and user’s guide
document for your implementation of NetRexx):

netrexxc toast –run

Of course, NetRexx can do more than just display a character string. Although the lan-
guage has a simple syntax, and has a small number of instruction types, it is powerful;
the reference implementation of the language allows full access to the rapidly grow-

1

ing collection of Java programs known as class libraries, and allows new class libraries
to be written in NetRexx. The rest of this overview introduces most of the features of
NetRexx. Since the economy, power, and clarity of expression in NetRexx is best ap-
preciated with use, you are urged to try using the language yourself.

1.2 Expressions and variables

Like say in the “toast” example, many instructions in NetRexx include expressions that
will be evaluated. NetRexx provides arithmetic operators (including integer division,
remainder, and power operators), several concatenation operators, comparison oper-
ators, and logical operators. These can be used in any combination within a NetRexx
expression (provided, of course, that the data values are valid for those operations).
All the operators act upon strings of characters (known as NetRexx strings), which may
be of any length (typically limited only by the amount of storage available). Quotes (ei-
ther single or double) are used to indicate literal strings, and are optional if the literal
string is just a number. For example, the expressions:

’2’ + ’3’
’2’ + 3
2 + 3

would all result in ’5’.
The results of expressions are often assigned to variables, using a conventional assign-
ment syntax:

Listing 1.2: Assignment
1 var1=5 /* sets var1 to '5' */
2 var2=(var1+2)*10 /* sets var2 to '70' */

You can write the names of variables (and keywords) in whatever mixture of uppercase
and lowercase that you prefer; the language is not case-sensitive. This next sample pro-
gram, “greet”, shows expressions used in various ways:

Listing 1.3: Greet
1 /* A short program to greet you. */
2 /* First display a prompt: */
3 say 'Please type your name and then press ENTER:'
4 answer=ask /* Get the reply into ANSWER */
5

6 /* If nothing was typed, then use a fixed greeting, */
7 /* otherwise echo the name politely. */
8 if answer='' then say 'Hello Stranger!'
9 else say 'Hello' answer'!'

After displaying a prompt, the program reads a line of text from the user (“ask” is a
keyword provided by NetRexx) and assigns it to the variable answer. This is then tested
to see if any characters were entered, and different actions are taken accordingly; for
example, if the user typed “Fred” in response to the prompt, then the program would
display:

Hello Fred!

2

As you see, the expression on the last say (display) instruction concatenated the string
“Hello” to the value of variable answer with a blank in between them (the blank is here
a valid operator, meaning “concatenate with blank”). The string “!” is then directly con-
catenated to the result built up so far. These unobtrusive operators (the blank operator
and abuttal) for concatenation are very natural and easy to use, and make building text
strings simple and clear.
The layout of instructions is very flexible. In the “greet” example, for instance, the if
instruction could be laid out in a number of ways, according to personal preference.
Line breaks can be added at either side of the then (or following the else).
In general, instructions are ended by the end of a line. To continue a instruction to a
following line, you can use a hyphen (minus sign) just as in English:

Listing 1.4: Continuation
1 say 'Here we have an expression that is quite long,' –
2 'so it is split over two lines'

This acts as though the two lines were all on one line, with the hyphen and any blanks
around it being replaced by a single blank. The net result is two strings concatenated
together (with a blank in between) and then displayed. When desired, multiple instruc-
tions can be placed on one line with the aid of the semicolon separator:

Listing 1.5: Multiple Instructions
1 if answer='Yes' then do; say 'OK!'; exit; end

(many people find multiple instructions on one line hard to read, but sometimes it is
convenient).

1.3 Control instructions

NetRexx provides a selection of control instructions, whose form was chosen for read-
ability and similarity to natural languages. The control instructions include if... then...
else (as in the “greet” example) for simple conditional processing:

Listing 1.6: Conditional
1 if ask='Yes' then say "You answered Yes"
2 else say "You didn't answer Yes"

select... when... otherwise... end for selecting from a number of alternatives:

Listing 1.7: select - when - otherwise
1 select
2 when a>0 then say 'greater than zero'
3 when a<0 then say 'less than zero'
4 otherwise say 'zero'
5 end
6 select case i+1
7 when 1 then say 'one'
8 when 1+1 then say 'two'
9 when 3, 4, 5 then say 'many'

10 end

3

do... end for grouping:

Listing 1.8: do - end
1 if a>3 then do
2 say 'A is greater than 3; it will be set to zero'
3 a=0
4 end

and loop... end for repetition:

Listing 1.9: loop - end
1 /* repeat 10 times; I changes from 1 to 10 */
2 loop i=1 to 10
3 say i
4 end i

The loop instruction can be used to step a variable to some limit, by some increment,
for a specified number of iterations, andwhile or until some condition is satisfied. loop
forever is also provided, and loop over can be used to work through a collection of
variables.
Loop execution may be modified by leave and iterate instructions that significantly re-
duce the complexity of many programs. The select, do, and loop constructs also have
the ability to “catch” exceptions (see 1.13 on page 16.) that occur in the body of the
construct. All three, too, can specify a finally instruction which introduces instructions
which are to be executed when control leaves the construct, regardless of how the con-
struct is ended.

1.4 NetRexx arithmetic

Character strings in NetRexx are commonly used for arithmetic (assuming, of course,
that they represent numbers).The string representation of numbers can include integers,
decimal notation, and exponential notation; they are all treated the same way. Here are
a few:

’1234’
’12.03’
’–12’
’120e+7’

The arithmetic operations in NetRexx are designed for people rather than machines,
so are decimal rather than binary, do not overflow at certain values, and follow the rules
that people use for arithmetic.Theoperations are completely defined by theANSIX3.274
standard for Rexx, so correct implementations always give the same results. An unusual
feature of NetRexx arithmetic is the numeric instruction: this may be used to select the
arbitrary precision of calculations. Youmay calculate to whatever precision that you wish
(for financial calculations, perhaps), limited only by available memory. For example:

Listing 1.10: Digits
1 numeric digits 50
2 say 1/7

4

which would display

0.14285714285714285714285714285714285714285714285714

The numeric precision can be set for an entire program, or be adjusted at will within
the program. The numeric instruction can also be used to select the notation (scientific
or engineering) used for numbers in exponential format. NetRexx also provides simple
access to the native binary arithmetic of computers. Using binary arithmetic offers many
opportunities for errors, but is useful when performance is paramount. You select binary
arithmetic by adding the instruction:

options binary

at the top of a NetRexx program. The language processor will then use binary arith-
metic (see page 14) instead of NetRexx decimal arithmetic for calculations, if it can,
throughout the program.

1.5 Doing things with strings

A character string is the fundamental datatype of NetRexx, and so, as you might expect,
NetRexx provides many useful routines for manipulating strings. These are based on
the functions of Rexx, but use a syntax that is more like Java or other similar languages:

Listing 1.11: Strings
1 phrase='Now is the time for a party'
2 say phrase.word(7).pos('r')

The second line here can be read from left to right as:
take the variable phrase, find the seventh word, and then find the position of the first “r” in that word.

This would display “3” in this case, because “r” is the third character in “party”.
(In Rexx, the second line above would have been written using nested function calls:

Listing 1.12: Rexx: Nested
1 say pos('r', word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack from right
to left to work out exactly what’s going on.)
In the NetRexx syntax, at each point in the sequence of operations some routine is act-
ing on the result of what has gone before. These routines are called methods, to make
the distinction from functions (which act in isolation). NetRexx provides (as methods)
most of the functions that were evolved for Rexx, including:
. changestr (change all occurrences of a substring to another). copies (make multiple copies of a string). lastpos (find rightmost occurrence). left and right (return leftmost/rightmost character(s)). pos and wordpos (find the position of string or a word in a string). reverse (swap end-to-end)

5

. space (pad between words with fixed spacing). strip (remove leading and/or trailing white space). verify (check the contents of a string for selected characters). word, wordindex, wordlength, and words (work with words).

These and the others like them, and the parsing described in the next section, make it
especially easy to process text with NetRexx.

1.6 Parsing strings

Theprevious section described some of the string-handling facilities available; NetRexx
also provides string parsing, which is an easy way of breaking up strings of characters
using simple pattern matching.
A parse instruction first specifies the string to be parsed. This can be any term, but is
often taken simply from a variable. The term is followed by a template which describes
how the string is to be split up, and where the pieces are to be put.

1.6.1 Parsing into words

The simplest form of parsing template consists of a list of variable names. The string
being parsed is split up into words (sequences of characters separated by blanks), and
each word from the string is assigned (copied) to the next variable in turn, from left to
right. The final variable is treated specially in that it will be assigned a copy of whatever
is left of the original string and may therefore contain several words. For example, in:

Listing 1.13: Parsing Strings
1 parse 'This is a sentence.' v1 v2 v3

the variable v1 would be assigned the value “This”, v2 would be assigned the value “is”,
and v3 would be assigned the value “a sentence.”.

1.6.2 Literal patterns

A literal string may be used in a template as a pattern to split up the string. For example

Listing 1.14: Parse
1 parse 'To be, or not to be?' w1 ',' w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point; each
section is then treated in just the same way as the whole string was in the previous ex-
ample.
Thus, w1 would be set to “To be”, w2 and w3 would be assigned the values “or” and
“not”, and w4 would be assigned the remainder: “to be?”. Note that the pattern itself is
not assigned to any variable. The pattern may be specified as a variable, by putting the
variable name in parentheses. The following instructions:

6

Listing 1.15: Parse with comma
1 comma=','
2 parse 'To be, or not to be?' w1 (comma) w2 w3 w4

therefore have the same effect as the previous example.

1.6.3 Positional patterns

The third kind of parsing mechanism is the numeric positional pattern. This allows
strings to be parsed using column positions.

1.7 Indexed strings

NetRexx provides indexed strings, adapted from the compound variables of Rexx. In-
dexed strings form a powerful “associative lookup”, or dictionary, mechanism which can
be used with a convenient and simple syntax.
NetRexx string variables can be referred to simply by name, or also by their name qual-
ified by another string (the index). When an index is used, a value associated with that
index is either set:
Listing 1.16: Index

1 fred=0 –– initial value
2 fred[3]='abc' ––indexed value

or retrieved:
Listing 1.17: Retrieving

1 say fred[3] ––would say "abc"

in the latter case, the simple (initial) value of the variable is returned if the index has not
been used to set a value. For example, the program:

Listing 1.18: Woof
1 bark='woof'
2 bark['pup']='yap'
3 bark['bulldog']='grrrrr'
4 say bark['pup'] bark['terrier'] bark['bulldog']

would display

yap woof grrrrr

Note that it is not necessary to use a number as the index; any expression may be used
inside the brackets; the resulting string is used as the index. Multiple dimensions may
be used, if required:

Listing 1.19: Multiple Dimensions
1 bark='woof'
2 bark['spaniel', 'brown']='ruff'
3 bark['bulldog']='grrrrr'
4 animal='dog'
5 say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

7

which would display

ruff woof grrrrr

Here’s a more complex example using indexed strings, a test program with a function
(called a static method in NetRexx) that removes all duplicate words from a string of
words:
Listing 1.20: justonetest.nrx

1 /* justonetest.nrx ––test the justone function. */
2 say justone('to be or not to be') /* simple testcase */
3 exit
4 /* This removes duplicate words from a string, and */
5 /* shows the use of a variable (HADWORD) which is */
6 /* indexed by arbitrary data (words). */
7 method justone(wordlist) static
8 hadword=0 /* show all possible words as new */
9 outlist='' /* initialize the output list */

10 loop while wordlist\='' /* loop while we have data */
11 /* split WORDLIST into first word and residue */
12 parse wordlist word wordlist
13 if hadword[word] then iterate /* loop if had word */
14 hadword[word]=1 /* remember we have had this word */
15 outlist=outlist word /* add word to output list */
16 end
17 return outlist /* finally return the result */

Running this program would display just the four words “to”, “be”, “or”, and “not”.

1.8 Arrays

NetRexx also supports fixed-size arrays. These are an ordered set of items, indexed by
integers. To use an array, you first have to construct it; an individual item may then be
selected by an index whose value must be in the range 0 through n–1, where n is the
number of items in the array:

Listing 1.21: Arrays
1 array=String[3] –– make an array of three Strings
2 array[0]='String one' ––set each array item
3 array[1]='Another string'
4 array[2]='foobar'
5 loop i=0 to 2 –– display the items
6 say array[i]
7 end

This example also shows NetRexx line comments; the sequence “––” (outside of literal
strings or “/*” comments) indicates that the remainder of the line is not part of the pro-
gram and is commentary.
NetRexx makes it easy to initialize arrays: a term which is a list of one or more expres-
sions, enclosed in brackets, defines an array. Each expression initializes an element of
the array. For example:

Listing 1.22: Initializing elements
1 words=['Ogof', 'Ffynnon', 'Ddu']

would set words to refer to an array of three elements, each referring to a string. So, for
example, the instruction:

8

Listing 1.23: Address Array Element
1 say words[1]

would then display

Ffynnon

1.9 Things that aren’t strings

In all the examples so far, the data being manipulated (numbers, words, and so on) were
expressed as a string of characters. Many things, however, can be expressed more easily
in some other way, so NetRexx allows variables to refer to other collections of data,
which are known as objects.
Objects are defined by a name that lets NetRexx determine the data and methods that
are associated with the object. This name identifies the type of the object, and is usually
called the class of the object.
For example, an object of class Oblong might represent an oblong to be manipulated
and displayed. The oblong could be defined by two values: its width and its height. These
values are called the properties of the Oblong class.
Most methods associated with an object perform operations on the object; for example
a size method might be provided to change the size of an Oblong object. Other methods
are used to construct objects (just as for arrays, an object must be constructed before
it can be used). In NetRexx and Java, these constructor methods always have the same
name as the class of object that they build (“Oblong”, in this case).
Here’s how an Oblong class might be written in NetRexx (by convention, this would be
written in a file called Oblong.nrx; implementations often expect the name of the file to
match the name of the class inside it):

Listing 1.24: Oblong
1 /* Oblong.nrx -- simple oblong class */
2 class Oblong
3

4 width -- size (X dimension)
5 height -- size (Y dimension)
6

7 /* Constructor method to make a new oblong */
8 method Oblong(new_width, new_height)
9 -- when we get here, a new (uninitialized) object has been

10 -- created. Copy the parameters we have been given to the
11 -- four properties of the object:
12 width=new_width; height=new_height
13

14 /* Change the size of a Oblong */
15 method size(new_width, new_height) returns Oblong
16 width=new_width; height=new_height
17 return this -- return the resized object
18

19 /* Change the size of a Oblong, relatively */
20 method relsize(rel_width, rel_height) returns Oblong
21 width=width+rel_width; height=height+rel_height
22 return this
23

24 /* 'Print' what we know about the oblong */
25 method print()
26 say 'Oblong' width 'x' height

9

To summarize:

1. A class is started by the class instruction, which names the class.
2. The class instruction is followed by a list of the properties of the object. These can

be assigned initial values, if required.
3. The properties are followed by the methods of the object. Each method is intro-

duced by a method instruction which names the method and describes the argu-
ments that must be supplied to the method. The body of the method is ended by
the next method instruction (or by the end of the file).

The Oblong.nrx file is compiled just like any other NetRexx program, and should create
a class file called Oblong.class. Here’s a program to try out the Oblong class:

Listing 1.25: Try Oblong
1 /* tryOblong.nrx -- try the Oblong class */
2 first=Oblong(5,3) -- make an oblong
3 first.print -- show it
4 first.relsize(1,1).print -- enlarge and print again
5 second=Oblong(1,2) -- make another oblong
6 second.print -- and print it

When tryOblong.nrx is compiled, you’ll notice (if your compilermakes a cross-reference
listing available) that the variables first and second have type Oblong. These variables
refer to Oblongs, just as the variables in earlier examples referred to NetRexx strings.
Once a variable has been assigned a type, it can only refer to objects of that type. This
helps avoid errors where a variable refers to an object that it wasn’t meant to.

1.9.1 Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are in fact
classes (you may have noticed that compiling them with the reference implementation
creates xxx.class files, where xxx is the name of the source file). The environment un-
derlying the implementation will allow a class to run as a stand-alone application if it
has a static method called main which takes an array of strings as its argument.
If necessary (that is, if there is no class instruction) NetRexx automatically adds the nec-
essary class and method instructions for a stand-alone application, and also an instruc-
tion to convert the array of strings (each of which holds one word from the command
string) to a single NetRexx string.
The automatic additions can also be included explicitly; the “toast” example could there-
fore have been written:

Listing 1.26: New Toast
1 /* This wishes you the best of health. */
2 class toast
3 method main(argwords=String[]) static
4 arg=Rexx(argwords)
5 say 'Cheers!'

though in this program the argument string, arg, is not used.
10

1.10 Extending classes

It’s common, when dealing with objects, to take an existing class and extend it. One
way to do this is to modify the source code of the original class – but this isn’t always
available, and with many different people modifying a class, classes could rapidly get
overcomplicated.
Languages that deal with objects, like NetRexx, therefore allow new classes of objects to
be set up which are derived from existing classes. For example, if you wanted a differ-
ent kind of Oblong in which the Oblong had a new property that would be used when
printing the Oblong as a rectangle, you might define it thus:

Listing 1.27: charOblong.nrx
1 /* charOblong.nrx -- an oblong class with character */
2 class charOblong extends Oblong
3 printchar -- the character for display
4 /* Constructor to make a new oblong with character */
5 method charOblong(newwidth, newheight, newprintchar)
6 super(newwidth, newheight) -- make an oblong
7 printchar=newprintchar -- and set the character
8 /* 'Print' the oblong */
9 method print

10 loop for super.height
11 say printchar.copies(super.width)
12 end

There are several things worth noting about this example:

1. The “extends Oblong” on the class instructionmeans that this class is an extension
of theOblong class.Theproperties andmethods of theOblong class are inherited by
this class (that is, appear as though they were part of this class). Another common
way of saying this is that “charOblong” is a subclass of “Oblong” (and “Oblong” is
the superclass of “charOblong”).

2. This class adds the printchar property to the properties already defined for Ob-
long.

3. The constructor for this class takes a width and height (just like Oblong) and adds
a third argument to specify a print character. It first invokes the constructor of its
superclass (Oblong) to build an Oblong, and finally sets the printchar for the new
object.

4. The new charOblong object also prints differently, as a rectangle of characters, ac-
cording to its dimension. The print method (as it has the same name and argu-
ments – none – as that of the superclass) replaces (overrides) the print’ method
of Oblong.

5. The other methods of Oblong are not overridden, and therefore can be used on
charOblong objects.

The charOblong.nrx file is compiled just like Oblong.nrx was, and should create a file
called charOblong.class.
Here’s a program to try it out

Listing 1.28: tryCharOblong.nrx
1 /* trycharOblong.nrx -- try the charOblong class */
2 first=charOblong(5,3,'#') -- make an oblong

11

3 first.print -- show it
4 first.relsize(1,1).print -- enlarge and print again
5 second=charOblong(1,2,'*') -- make another oblong
6 second.print -- and print it

This should create the two charOblong objects, and print them out in a simple “char-
acter graphics” form. Note the use of the method relsize from Oblong to resize the
charOblong object.

1.10.1 Optional arguments

All methods in NetRexx may have optional arguments (omitted from the right) if de-
sired. For an argument to be optional, youmust supply a default value. For example, if the
charOblong constructor was to have a default value for printchar, its method instruction
could have been written
Listing 1.29: Default value X

1 method charOblong(newwidth, newheight, newprintchar='X')

which indicates that if no third argument is supplied then ’X’ should be used. A program
creating a charOblong could then simply write:

Listing 1.30: Default value
1 first=charOblong(5,3) -- make an oblong

which would have exactly the same effect as if ’X’ were specified as the third argument.

1.11 Tracing

NetRexx tracing is defined as part of the language. The flow of execution of programs
may be traced, and this trace can be viewed as it occurs (or captured in a file). The trace
can show each clause as it is executed, and optionally show the results of expressions,
etc. For example, the trace results in the program “trace1.nrx”:

Listing 1.31: Trace
1 trace results
2 number=1/7
3 parse number before '.' after
4 say after'.'before

would result in:

––– trace1.nrx
2 *=* number=1/7

>v> number ”0.142857143”
3 *=* parse number before ’.’ after

>v> before ”0”
>v> after ”142857143”

4 *=* say after’.’before
>>> ”142857143.0”

142857143.0

12

where the line marked with “–––” indicates the context of the trace, lines marked with
“*=*” are the instructions in the program, lines with “>v>” show results assigned to local
variables, and lines with “»>” show results of unnamed expressions.
Further, tracemethods lets you trace the use of all methods in a class, along with the val-
ues of the arguments passed to each method. Here’s the result of adding trace methods
to the Oblong class shown earlier and then running tryOblong:

––– Oblong.nrx
8 *=* method Oblong(newwidth, newheight)
>a> newwidth ”5”
>a> newheight ”3”

26 *=* method print
Oblong 5 x 3
20 *=* method relsize(relwidth, relheight)–

21 *–*
>a> relwidth ”1”
>a> relheight ”1”

26 *=* method print
Oblong 6 x 4
returns Oblong

10 *=* method Oblong(newwidth, newheight)
>a> newwidth ”1”
>a> newheight ”2”

26 *=* method print
Oblong 1 x 2

where lines with “>a>” show the names and values of the arguments.
It is often useful to be able to find out when (and where) a variable’s value is changed.
The trace var instruction does just that; it adds names to or removes names from a list
of monitored variables. If the name of a variable in the current class or method is in the
list, then trace results is turned on for any assignment, loop, or parse instruction that
assigns a new value to the named variable.
Variable names to be added to the list are specified by listing them after the var keyword.
Any name may be optionally prefixed by a – sign., which indicates that the variable is to
be removed from the list.
For example, the program “trace2.nrx”:

Listing 1.32: trace2.nrx
1 trace var a b -- now variables a and b will be traced
2 a=3
3 b=4
4 c=5
5 trace var –b c -- now variables a and c will be traced
6 a=a+1
7 b=b+1
8 c=c+1
9 say a b c

would result in:

--- trace2.nrx

13

3 *=* a=3
>v> a ”3”

4 *=* b=4
>v> b ”4”

8 *=* a=a+1
>v> a ”4”

10 *=* c=c+1
>v> c ”6”

4 5 6

1.12 Binary types and conversions

Most programming environments support the notion of fixed-precision “primitive” bi-
nary types, which correspond closely to the binary operations usually available at the
hardware level in computers. For the reference implementation, these types are:

. byte, short, int, and long – signed integers that will fit in 8, 16, 32, or 64 bits respec-
tively. float and double – signed floating point numbers that will fit in 32 or 64 bits respec-
tively.. char – an unsigned 16-bit quantity, holding a Unicode character. boolean – a 1-bit logical value, representing 0 or 1 (“false” or “true”).

Objects of these types are handled specially by the implementation “under the covers”
in order to achieve maximum efficiency; in particular, they cannot be constructed like
other objects – their value is held directly.This distinction rarelymatters to the NetRexx
programmer: in the case of string literals an object is constructed automatically; in the
case of an int literal, an object is not constructed.
Further, NetRexx automatically allows the conversion between the various forms of
character strings in implementations3 and the primitive types. The “golden rule” that
is followed by NetRexx is that any automatic conversion which is applied must not lose
information: either it can be determined before execution that the conversion is safe (as
in int to String) or it will be detected at execution time if the conversion fails (as in
String to int).
The automatic conversions greatly simplify the writing of programs; the exact type of
numeric and string-like method arguments rarely needs to be a concern of the pro-
grammer. For certain applications where early checking or performance override other
considerations, the reference implementation of NetRexx provides options for different
treatment of the primitive types:

1. options strictassign – ensures exact type matching for all assignments. No con-
versions (including those from shorter integers to longer ones) are applied. This
option provides stricter type-checking thanmost other languages, and ensures that
all types are an exact match.

3In the reference implementation, these are String, char, char[] (an array of characters), and the NetRexx string type, Rexx.

14

2. options binary – uses implementation-dependent fixed precision arithmetic on
binary types (also, literal numbers, for example, will be treated as binary, and local
variables will be given “native” types such as int or String, where possible).

Binary arithmetic currently gives better performance thanNetRexx decimal arithmetic,
but places the burden of avoiding overflows and loss of information on the programmer.
The options instruction (which may list more than one option) is placed before the first
class instruction in a file; the binary keyword may also be used on a class or method
instruction, to allow an individual class or method to use binary arithmetic.

1.12.1 Explicit type assignment

You may explicitly assign a type to an expression or variable:

Listing 1.33: Assigning Type
1 i=int 3000000 -- 'i' is an 'int' with value 3000000
2 j=int 4000000 -- 'j' is an 'int' with value 4000000
3 k=int -- 'k' is an 'int', with no initial value
4 say i*j -- multiply and display the result
5 k=i*j -- multiply and assign result to 'k'

This example also illustrates an important difference between options nobinary and
options binary. With the former (the default) the say instruction would display the re-
sult “1.20000000E+13” and a conversion overflow would be reported when the same
expression is assigned to the variable k.
With options binary, binary arithmetic would be used for the multiplications, and so
no error would be detected; the say would display “–138625024” and the variable k takes
the incorrect result.

1.12.2 Binary types in practice

In practice, explicit type assignment is only occasionally needed inNetRexx.Those con-
versions that are necessary for using existing classes (or those that use options binary)
are generally automatic. For example, here is an Applet for use by Java-enabled browsers:

Listing 1.34: A Simple Applet
1 /* A simple graphics Applet */
2 class Rainbow extends Applet
3 method paint(g=Graphics) -- called to repaint window
4 maxx=size.–width1
5 maxy=size.–height1
6 loop y=0 to maxy
7 col=Color.getHSBColor(y/maxy, 1, 1) -- new colour
8 g.setColor(col) -- set it
9 g.drawLine(0, y, maxx, y) -- fill slice

10 end y

In this example, the variable col will have type Color, and the three arguments to the
method getHSBColor will all automatically be converted to type float. As no overflows
are possible in this example, options binary may be added to the top of the program
with no other changes being necessary.

15

1.13 Exception and error handling

NetRexx does not have a goto instruction, but a signal instruction is provided for ab-
normal transfer of control, such as when something unusual occurs. Using signal raises
an exception; all control instructions are then “unwound” until the exception is caught
by a control instruction that specifies a suitable catch instruction for handling the ex-
ception.
Exceptions are also raised when various errors occur, such as attempting to divide a
number by zero. For example:

Listing 1.35: Exception
1 say 'Please enter a number:'
2 number=ask
3 do
4 say 'The reciprocal of' number 'is:' 1/number
5 catch Exception
6 say 'Sorry, could not divide "'number'" into 1'
7 say 'Please try again.'
8 end

Here, the catch instruction will catch any exception that is raised when the division is
attempted (conversion error, divide by zero, etc.), and any instructions that follow it are
then executed. If no exception is raised, the catch instruction (and any instructions that
follow it) are ignored.
Any of the control instructions that end with end (do, loop, or select) may be modified
with one or more catch instructions to handle exceptions.

1.14 Summary and Information Sources

The NetRexx language, as you will have seen, allows the writing of programs for the
Java environment with aminimumof overhead and “boilerplate syntax”; usingNetRexx
for writing Java classes could increase your productivity by 30% or more. Further, by
simplifying the variety of numeric and string types of Java down to a single class that
follows the rules of Rexx strings, programming is greatly simplified. Where necessary,
however, full access to all Java types and classes is available.
Other examples are available, including both stand-alone applications and samples of
applets for Java-enabled browsers (for example, an applet that plays an audio clip, and
another that displays the time in English). You can find these from the NetRexx web
pages, at http://www.netrexx.org. Also at that location, you’ll find the NetRexx lan-
guage specification and other information, and downloadable packages containing the
NetRexx software and documentation. There is a large selection of NetRexx examples
available at http://www.rosettacode.org. The software should run on any platform
that has a Java Virtual Machine (JVM) available.

16

http://www.netrexx.org
http://www.rosettacode.org

2

Requirements

NetRexx 3.11-GA runs on awide variety of hardware and operating systems; all releases
are tested on (non-exhaustive):

1. Windows Desktop and Server editions, with OpenJDK, Oracle and IBM JVMs
2. Linux, with OpenJDK, Oracle and IBM JVMs, including z/Linux
3. macOS with OpenJDK and Oracle JVM; Apple JVM 1.6 is supported.
4. Android on ARM hardware with Dalvik virtual machine
5. z/OS, z/Linux with IBM JVM.
6. eComstation 2.x or ArcaOS (OS/2) Java 1.6
7. The Raspberry Pi, using Raspbian Linux and its included JDK, or OpenJDK

NetRexx runs equally well on 32- or 64-bit JVMs. As the translator is a command line
tool, no graphics configuration is required, and headless operation is supported. Care
has been taken to keep the NetRexx runtime small.
The class file format, however, of the current release distribution, is
.; for older formats, you can build NetRexx yourself or request assistance from the de-
velopment team4 for a special build.

Since release 3.01, NetRexx requires only a JRE5 for programdevelopment, where previ-
ously a Java SDK6 (earlier name: JDK) was required. For serious development purposes
a Java SDK is recommended, as the tools found therein might assist the development
process.

The highest Java version that is supported in this version, 3.09, is Java 8. Higher versions
are not yet supported due to changes in Java, including incompatibilities introducedwith
the Java module system.

4see the NetRexx project at SourceForge.net

17

3

Installation

This chapter of the document tells you how to unpack, install, and test the NetRexx
translator package.This will install documentation, samples, and executables. It will first
state some generic steps that are sufficient for most users. The appendices contain very
specific instructions for a range of platforms that NetRexx is used on. Note that to run
any of the samples, or use the NetRexx translator, you must have already installed the
Java runtime (and toolkit, if you want to compile NetRexx programs using the default
compiler). The NetRexx samples and translator, version 3.11-GA, are guaranteed to
run on Java version 1.6 or later; the programs using the NetRexxR.jar runtime library
will run on earlier versions of many JVM’s.7 For ease of development and the availabil-
ity of additional Java tools, a Java SDK can be installed, but NetRexx programs can be
interpreted or compiled on a Java JRE installation8. By default the built-in (same com-
piler classes as javac uses) compiler of the Java SDK is used. You can test whether Java is
installed, and its version, by trying the following command at a command prompt:

java –version

which should display a response similar to this:
1 openjdk version ”1.8.0_242”
2 OpenJDK Runtime Environment (build 1.8.0_242-b06)
3 OpenJDK 64-Bit Server VM GraalVM CE 20.0.0 (build 25.242-b06-jvmci-20.0-

b02, mixed mode)

For more information on Java installation, see the Oracle Java web page9 – or other sup-
pliers of Java toolkits.

3.1 Unpacking the NetRexx package

TheNetRexxpackage is shipped as a collection of files compressed into the fileNetRexx<version>.zip.
Mostmodern operating environments can uncompress a .zip package by doubleclicking.

3.1.1 Unpacking the NetRexx.zip file

An unzip command is included inmost Linux distributions, andMacOSX. You can also
use the jar command which comes with all Java development kits, with the options xvf.
Choose where you want the NetRexx directory tree to reside, and unpack the zip file

7For earlier versions of Java, NetRexx 2.05 is available from the NetRexx.org website.
8See chapter 7
9at http://www.javasoft.com

18

http://www.javasoft.com

in the directory which will be the parent of the NetRexx tree. Here are some tips: The
syntax for unzipping NetRexx3.11-GA.zip is simply

unzip NetRexx3.11-GA.zip

which should create the files and directory structure directly.
. WinZip: all versions may be used. Linux unzip: use the syntax: unzip –a NetRexx3.11-GA.zip. The “–a” flag will

automatically convert text files to Unix format if necessary. jar: The syntax for unzipping the package is
jar xvf NetRexx3.11-GA.zip

which should create the files and directory structure directly. The “x” indicates that the
contents should be extracted, and the “f ” indicates that the zip file name is specified, the
“v” is for verbose. Note that the extension (.zip) is required.
After unpacking, the following directories should have been created:

3.2 The NetRexx packages

In the lib subdirectory, there are three java archive files (jars), which are called:

NetRexxF.jar The translator (and runtime) package including the ecj10 java compiler
NetRexxC.jar The translator (and runtime) package without java compiler
ecj-4.6.3.jar The eclipse java compiler package

The runlib directory contains one java archive:

NetRexxR.jar A minimal package including only the runtime NetRexx classes - for
distribution with NetRexx programs

It is advised to start with the NetRexxF.jar archive package. This can be used for your
first NetRexx activities in a way that is independent of the Java classpath, or the Java in-
stallation - a development installation (JDK) or just the java runtime (JRE). This enables
you to interpret, or compile NetRexx programs to .class files. The NetRexxC.jar pack-
age is used by experienced NetRexx users; it requires a correct setting of the classpath
environment variable (explicitly, or implicitly by adding it to the JVM standard exten-
sion directory) to find the java compiler (either the JDK included javac classes or the
included eclipse compiler) - on a JDK or JRE installation. The NetRexxR.jar contains
only the runtime of the NetRexx language. It can be added to compiled NetRexx ap-
plications if a small footprint is required. The following paragraph discusses getting the
compiler to translate your first program using the NetRexxF.jar - after that the process
of adding the translator to your environment is shown, what we will call ’installing’ here.
There is no requirement for a ’setup’ type of install, and when you can execute Java on
your system, there is no need to be ’Administrator’ or ’root’ on your system - NetRexx
runs fine from your home directory.

10Eclipse Compiler for Java

19

3.3 First steps with NetRexx

1. Verify the working of java on your system with the command: java -version
If this does not work, obtain a version at http://java.com and install it.

2. Create a file named hello.nrx in the directory that contains NetRexxF.jar, that con-
tains the line:
say ’hello, netrexx world!’
You can copy this file from the ../bin directory.

3. For Windows environments, add the bin directory to your PATH environment
variable. The nrc.bat command takes care of adding the NetRexxF.jar library to
your CLASSPATH environment variable, so you can just run with:
nrc -exec hello
To compile to a java .class file, leave out the -exec option. If this works, you can
skip the other steps (or read on, to get a feel for the working of the CLASSPATH
environment).

4. In this directory, verify the working of the interpreter with:
java -jar NetRexxF.jar -exec hello

5. Verify the creating of a .class file using the compiler with:
java -jar NetRexxF.jar hello
This should create hello.class, to be executed with the command:
java -cp NetRexxF.jar:. hello
(on windows, the colon should be a semicolon)

The -jar directive tells the JVM to ignore the set classpath and to start a method that is
indicated in the jar metadata.This method is, for the NetRexxF.jar:

java org.netrexx.process.NetRexxC

just as shown in 3.7 on page 22. Now that you have seen that it works, you can use this
method of execution11, or proceed with installing a more flexible way of using NetRexx.
When a class calls another class that is located in the same directory, we need to add
this directory to the classpath. For example, if we want to compile the charOblong.nrx
example from page 11, which extends the Oblong class, we need to invoke it as:

java -jar NetRexxF.jar -cp NetRexxF.jar;. charOblong.nrx

This can be done in a more straightforward way, by installing the NetRexxC.jar on the
classpath and using the provided nrc script; this is the subject of the next section.

3.4 Installing the NetRexx Translator

TheNetRexx package includes the NetRexx translator – a Java application which can be
used for compiling, interpreting, or syntax-checking NetRexx programs.The procedure
for installation is as follows12:

11Taking into account that you will have to add additional entries to the -jar argument for all but the most trivial applications.
12For Windows operating systems, forward slashes are backslashes.

20

http://java.com

1. Make the translator visible to the Java Virtual Machine (JVM) - either:. Add the full path and filename of the NetRexx/lib/NetRexxC.jar to the
CLASSPATH environment variable for your operating system.13. Or (deprecated): Copy the file NetRexx/lib/NetRexxC.jar to the jre/lib/ext
directory in the Java installation tree. The JVM will automatically find it there
and make it available14.

2. Copy all the files in the NetRexx/bin directory to a directory in your PATH. This
is not essential, but makes shorthand scripts and a test case available.

3. Make the file [...]/lib/tools.jar (which contains the javac compiler) in the Java tree
visible to the JVM. You can do this either by adding its path and filename to the
CLASSPATH environment variable, or by moving it to the jre/lib/ext directory in
the Java tree.This file sometime goes under different names, that will bementioned
in the platform-specific appendices.

3.5 Installing just the NetRexx Runtime

If you onlywant to runNetRexx programs and do notwish to compile or interpret them,
or if you would like to use the NetRexx string (Rexx) classes from other languages, you
can install just the NetRexx runtime classes.
To do this, follow the appropriate instructions for installing the compiler, but use the
NetRexxR.jar instead of NetRexxC.jar. The NetRexxR.jar file can be found in the
NetRexx/runlib directory.
You do not need to use or copy the executables in the NetRexx/bin directory.
The NetRexx class files can then be referred to from Java or NetRexx programs by im-
porting the packagenetrexx.lang. For example, a stringmight be of classnetrexx.lang.Rexx.
For information on the netrexx.lang.Rexx class and other classes in the runtime, see the
NetRexx Language Reference document.
note If you have already installed the NetRexx translator (NetRexxC.jar) then you do
not need to install NetRexxR.jar; the latter contains only the NetRexx runtime classes,
and these are already included in NetRexxC.jar.

3.6 Setting the CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH to indi-
cate a search path for Java classes. The Java Virtual Machine and the NetRexx transla-
tor rely on the CLASSPATH value to find directories, zip files, and jar files which may
contain Java classes. The procedure for setting the CLASSPATH environment variable
depends on your operating system, and for Unix versions, which shell you are using.

13if you have a NetRexxC.zip in your CLASSPATH from an earlier version of NetRexx, remove it (NetRexxC.jar replaces
NetRexxC.zip).

14 This has serious drawbacks, however: As soon as the Java version is updated, NetRexx applications may mysteriously – due
to the now obsolete path - fail. The contents of the extensions directory are unversioned. Running multiple versions of Java and
NetRexx for testing purposes, or with an application that included another version of NetRexx will become very hard when this
way of installing is chosen.

21

. For Linux, MacOSX and other Unix versions (BASH (bash), Korn (ksh), or Bourne
(sh) shell), use:

CLASSPATH=<newdir>:\$CLASSPATH
export CLASSPATH. This should be placed in your /.bash_profile, /etc/profile, .login, or .profile file, as

appropriate.The environment changes can bemade active by running, for example,
. .bash_profile

in your home directory, when this location is where you made the changes.. For Linux, MacOSX and other Unix versions (C shell (csh and tcsh)), use:
setenv CLASSPATH <newdir>:\$CLASSPATH

These should be set in your .cshrc file (csh) or .tcshrc (tcsh). The rehash command
can be used to activate these changes in the environment. If you are unsure of how
to do this, check the documentation you have for installing the Java toolkit.. For Windows operating systems, it is best to set the system wide environment,
which is accessible using the Control Panel (a search for “environment” offsets the
many attempts to relocate the exact dialog in successive Windows Control Panel
versions somewhat).. In Windows Powershell, limitations set by the administrator can determine which
kind of scripting (using Powershell, not NetRexx) can be undertaken. It might
be difficult to modify the environment, and a different from scripting under the
cmd.exe processor is that the environment is local to an execution unit of a line.
When changing the environment is allowed, and a Powershell script is used to start
the NetRexxtranslator, this is how it can be done:
$env:path = ”c:\program files\java\jdk1.7.0_02\bin;\Users\rvj\bin;”
$env:classpath = ”.;\Users\rvj\lib\NetRexxC.jar”. For pre 3.04 versions of NetRexx, when using an IBM JVM or JRE, make sure
that the file vm.jar is on the CLASSPATH - NetRexx will complain about missing
java.lang.Object when it is not. NetRexx 3.04 and later are looking up the boot-
classpath in a correct manner to avoid this problem.

In case of encountering difficulties in getting the classpath settings to work, the following
remarks can be helpful:
. Spaces in directory names are OK, but these paths must be surrounded by double

quotes in most environments, like Windows and Unix. Non-existing directories in classpaths can hurt - move the NetRexxC.jar path to
the beginning of classpath to eliminate the risk of non-existing directories.

3.7 Testing the NetRexx Installation

After installing NetRexx, it is recommended that you test that it is working correctly. If
there are any problems, check the Troubleshooting section of this document, chapter 16
on page 76.
Test the installation by typing in a file named ’hello.nrx’ containing the line:

22

say ’hello, world’

If you want to avoid typing in the file yourself,

./examples/ibm-historic/hello.nrx

has the original version of this program.

1. Enter the command
java org.netrexx.process.NetRexxC hello

Make sure that the userid that you are using for this has write authorization for the
directory that contains the source.15 This should run the NetRexx compiler, which
first translates the NetRexx program hello.nrx to the Java program hello.java. It
then invokes the default Java compiler (javac16), to compile the file hello.java to
make the binary class file hello.class.The intermediate hello.java file is then deleted,
unless an error occurred or you asked for it to be kept. You can also specify the
source filename as ’hello.nrx’ - for convenience, the translator will look for a file
with a ’.nrx’ suffix if this is not specified.

2. Enter the command
java hello

This runs (interprets the bytecodes in) the hello.class file, which should display a
simple greeting. On some systems, you may first have to add the directory that
contains the hello.class file to the CLASSPATH setting so Java can find it.

3. With the sample scripts provided (NetRexxC.cmd,NetRexxC.bat, orNetRexxC.sh),
or the equivalent in the scripting language of your choice, the steps above can be
combined into a simple single command such as:

NetRexxC.sh –run hello

This package also includes a trivial nrc, and matching nrc.cmd and nrc.bat scripts,
which simply pass on their arguments to NetRexxC; “nrc” is just a shorter name
that saves keystrokes, so for the last example you could type:

nrc –run hello

Note that scripts may be case-sensitive, and you will probably have to spell the
name of the program exactly as it appears in the filename. Also, to use –run, you
may need to omit the .nrx extension. You could also edit the appropriate nrc.cmd,
nrc.bat, or nrc script and add your favourite “default” NetRexxC options there. For
example, you might want to add the –prompt flag (described later) to save reload-
ing the translator before every compilation. If you do change a script, keep a backup
copy so that if you install a new version of the NetRexx package you won’t over-
write your changes. On Unix versions, do not forget to make the scripts nrc and
NetRexxC.sh executable with the command chmod +x scriptname. Also on Unix
versions, it is better to use a command alias to start java classes; it avoids problems
with the splitting of strings on the command line. This is a workable set of aliases
to go into a .bash_profile script:

15For example, more modern versions of Windows do not allow non-admin userids to write into the program files directories. In
this case, make a directory under your home directory and copy the hello.nrx file there, and start the nrc command from the same
location. Running it from the examples directory will work.

16In fact, the class that the javac program also calls for compilation - but you can use other java compilers

23

alias nrc=”java -cp $CLASSPATH org.netrexx.process.NetRexxC”
alias pipe=”java org.netrexx.njpipes.pipes.runner”
alias pipc=”java org.netrexx.njpipes.pipes.compiler”
alias nrs=”jrunscript -l netrexx -cp ~/lib/NetRexxC.jar”

24

4

Using a Docker image or the Native Compilers
for JVM releases after 9

While the portable version of the NetRexx cannot find classes that are in Java modules,
macOS and Linux users on X86_64 do not need to install a backlevel JVM if their system
already contains a newer version. One alternative is using a Docker image to compile in
a container. Another is to use the native (i.e. compiled to native machine instructions for
the instruction set architecture - operating system combination) versions of the transla-
tor.

4.1 Which to choose

Apart from having different JVM levels installed and having the ability to change be-
tween these with a script, the suggestion is to use a Docker container when you already
are usingDocker, this is the easiest option.This images also enable quick testing of differ-
ent versions of NetRexx itself. WhenDocker is new to you, and you are runningmodern
versions of macOS or Linux on a 64bit Intel machine, then the native executable might
be a good alternative. Sometimes these have slightly better compile time performance.
In both approaches, the final product is a .class file - except when running NetRexx
Pipelines, where no executable is produced.

4.2 Native executables

Native executables are produced using the Graal JVM and enable executing JVM-8 level
code with a JVM that is included in the executable module. The resulting class files are
usable in recent versions of Java, for example JVM versions 9 to 12. They are an experi-
mental feature. The NetRexx translator uses JVM features that require a fallback-JVM
for execution; when one installs the Graal JVM for a specificmachine architecture, it can
be used to produce native executables from NetRexx source that do not require a JVM
at all on the target machine. The natively executable versions of the translator are deliv-
ered in separate distributions, one for Linux and one for macOS. In each distribution,
these executables and jars are to be found:

1. nrc
2. pipe
3. pipc
4. nrws

25

5. NetRexxC.jar

These should be in a directory on the executable PATH environment variable, or exe-
cuted with ./ (for example, ./nrc). Care should be taken to disable alias statements that
point to the .class versions of these executables.

4.2.1 Classpath considerations

The executable version needs to be able to find NetRexx.jar in a subdirectory build/lib
relative to itself. When unzipping the distribution, this has been taken care of. On the
nrc command, the classpath can be specified. In some cases, it seems necessary to have
a copy of NetRexxC.jar in the current directory.17

4.3 Docker Image

Docker is a container technology. It is available for Mac, Windows and Linux. Infor-
mation can be found at http://docker.com. The Community Edition can be used free of
charge. In short, a container is combined from several images and runs a Linux distri-
bution that is mapped to calls for the host OS. Starting with 3.07, docker images will be
available for NetRexx. This has several advantages:

1. New releases can be tested without impacting the current installation of NetRexx
2. Easy testing on multiple JDK / JRE versions (OPen JDK, IBM J9, etc)
3. No JDK or JRE is required on your desktop / laptop / work machine to develop and

run NetRexx programs
4. No installation of NetRexx and its required path and classpath
5. An image is delivered with a Java version that is tested with the NetRexx release -

so it is known to work
6. The eclipse batch compiler will not be required
7. NetRexx, its batchfiles and its classpath will be setup already to avoid all installation

problems going forward
8. When your appneeds native calls, only one versionneeds to be produced andmain-

tained
9. It will insulate against incompatible JVM changes where NetRexx development

needs to catch up
10. It will be the start of a distributionmechanism forNetRexx applications cq. libraries

Two ways of using the image are foreseen: A shell within the image Working with a bind
mounted directory in the shell of your local machine Work with a shell within the image
As producing data within the image generally is not recommended this also involves a
bind-mounted directory, but you will work inside of the shell in the docker container
and you can use all the tools provided in the image. A suitable command line would be

docker run --rm -it -v ”\$PWD”:/nrx -w /nrx rvjansen/netrexx:latest zsh
17under investigation; this might be a Graal bug/feature.

26

If you want to keep changes in the container (for example, when you added tools or
configuration that are useful and need to go into a new image, based on this image), do
not use the –rm switch. The docker documentation explains how to commit this con-
tainer and tag its new image. The rvjansen/netrexx:3.07 will be downloaded once from
the docker hub, when it is not on the local machine yet. It will know it has been down-
loaded the next time you start this image. Also, it will detect when the image has been
updated. The -it switcher are needed for an interactive terminal session. the -v switch
bind mounts the current directory into a directory /nrx in the image.
Compile or exec from a shell on your host machine The term ’host machine’ is used here
to indicate the fact that the docker image can be seen as running a guest OS18. A suitable
command line would be: (assuming you want to compile a class called RSAnrx in the
local directory)

docker run --rm -v ”\$PWD”:/nrx -w /nrx rvjansen/netrexx:latest nrc RSAnrx

Here, –rm will make sure the container is not kept, the -v tells docker to bind mount
the current directory to a directory /nrx within the container, and -w sets this as the
working directory. The rvjansen/netrexx:3.07 will be downloaded once from the docker
hub, when it is not on the localmachine yet. It will know it has been downloaded the next
time you start this image. Of course, in most shells is it possible to alias this command,
or start a batchfile, c.q. a shell script containing this.

18while in reality it is a separated session on the same Linux kernel

27

5

TheNetRexxWorkspace - nrws

A read-evaluate-print3.08 loop, or REPL, is a very popular way for users to familiarize them-
selveswith the language19 and design and/or prototype programs.Martin Lafaix has con-
tributed such a facility already in the year 2000, but the inclusion of his Workspace for
NetRexx took some time. The JSR-199 scripting facility, which was added to the distri-
bution earlier, could do something akin to this, but could not remember variable values
over executions. The requirement to fix this issue, and the wish to have some facility
that can execute Pipes for NetRexx in the fastest possible way, led to the resurrection of
this nearly 20-year old code, with some updates for command history (up- down arrow-
ing through it) and -editing, included multiline-editing. The NetRexx workspace has a
requirement of Java 8.

5.1 Installation

nrws is included in both NetRexxF.jar and NetRexxC.jar. Wherever NetRexx works,
its workspace will work. It is advisable to have a shortcut for starting it. In the bin di-
rectory (for windows users) a nrws.bat batchfile can be found. In that same directory a
.bash_aliases file can be found, which adds a nrws command for unixlike systems like
Linux andmacOS. Both are short forms of running java org.vpad.extra.workpad.Workspace.

5.2 Starting nrws

To begin using Workspace for NetRexx, issue the command nrws to the operating sys-
tem shell.There is a brief pause, some start-upmessages, and then the first frame appears.
The standard prompt (which canbemodified in variousways, through thenrws.properties
file in the home directory) has a left and a right component. On the left side, the default
is nrws>. On the right side, the default is that that current computation step in the cur-
rent frame is indicated. The concepts of computation step and frame will be explained
shortly. It is also possible to have an indication of the elapsed time for the last command
in the righthand prompt.
When you want to enter input to Workspace for NetRexx, you do so on the same line
after the left prompt. The ”1” in the right prompt is that computation step number and
is incremented after you enter Workspace for NetRexx statements. Note, however, that
a system command such as)clear all may change the step number in other ways.

19for example, Python, Ruby, Swift and Elixir have them, and there are used in all introductory literature

28

5.3 Exit nrws

To exit from Workspace for NetRexx, type)quit at the input prompt and press the Enter
key. It is possible to configure this to display the following message:

Please enter ”y” or ”yes” if you really want to leave the interactive
environment and return to the operating system.

You should enter yes, for example, to exit Workspace for \nr{}.

The is also a)pquit system command that always protects your exit from the workspace.
BecauseWorkspace for NetRexx runs on a number of differentmachines and platforms,
operating system shells and windowing environments, there is no standard appearance.
You are to experiment with profiles and schemes for shells; one favourite is dark solar-
ized (shown). You can also change the way thatWorkspace for NetRexx behaves via sys-
tem commands described later in this chapter and in Appendix A. System commands
are special commands, like)set, that begin with a closing parenthesis and are used to
change your environment. For example, you can set a system variable so that you are
not prompted for confirmation when you want to leave Workspace for NetRexx.
You are ready to begin your journey into the world of Workspace for NetRexx. Let’s
proceed to the first step.

5.4 Exploring the NetRexx language

The NetRexx language is a rich language for performing interactive computations and
for building components for the Java libraries. For a full description, please consult the
The NetRexx Language definition.

5.5 Arithmetic Expressions

For arithmetic expressions, use the ”+” and ”-” operators as in mathematics. Use ”*”
for multiplication, ”/” for division, and ”**” for exponentiation. When an expression
contains several operators, those of highest precedence are evaluated first. For arithmetic
operators, ”**” has highest precedence, ”*” and ”/” have the next highest precedence, and
”+” and ”-” have the lowest precedence.

say 1 + 2 - 3 / 4 * 3 ** 2 - 1
-4.75

NetRexx puts implicit parentheses around operations of higher precedence, and groups
those of equal precedence from left to right. The above expression is equivalent to this.

say ((1 + 2) - ((3 / 4) * (3 ** 2))) - 1
-4.75

If an expression contains subexpressions enclosed in parentheses, the parenthesized
subexpressions are evaluated first (from left to right, from inside out).

29

say 1 + 2 - 3 / (4 * 3 ** (2 - 1))
2.75

5.6 Some Types

Everything in NetRexx has a type. The type determines what operations can be per-
formed on an object and how the object can be used. For the following, please keep in
mind that sometimes a variable needs to be assigned a type first.

5.7 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like keywords, the name of variables or
to identify some algorithm.
A symbol has a name beginning with an uppercase or lowercase alphabetic character, ’$’,
’(Euro)’, or ’_’. Successive characters (if any) can be any of the above, or digits. Case is by
default undistinguished : the symbol points is no different from the symbol Points.
A symbol can be used in Workspace for NetRexx as a variable. A variable refers to a
value. To assign a value to a variable, the operator ”=” is used. A variable initially has no
restriction on the kinds of values to which it can refer.
This assignment gives the value 4 to a variable names x:

x = 4

To restrict the type of objects that can be assigned to a variable, use a declaration:

y = int

The declaration for y forces values assigned to y to be converted to integer values. If no
such conversion is possible, NetRexx refuses to assign a value to y:

y = 2/3
java.lang.NumberFormatException: Decimal part non-zero: 0.666666667

A type declaration can also be given together with an assignment. The declaration can
assist NetRexx in choosing the correct operations to apply:

f = float 2/3

Any number of expressions can be given on input line. Just separate them by semicolons.
These two expressions have the same effect as the previous single expression:

f = float; f = 2/3

5.8 Conversion

Objects of one type can usually be ”converted” to objects of several other types. To con-
vert an object to a new type, prefix the expression with the desired type.

30

say int sin(PI)
0

Some conversions can be performed automatically when NetRexx tries to evaluate in-
put. Other conversions must be explicitly requested.

5.9 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the arithmetic
operator ”+” or ”-” between the two arguments denoting the values. To usemost of other
NetRexx operations, however, you use another syntax: write the name of the operation
first, then an open parenthesis, then each arguments separated by commas, and, finally,
a closing parenthesis.
This calls the operation sqrt with the single integer argument 120:

say sqrt(120)
10.95445115010332

This is a call to max with the two integer arguments 125 and 7:

say max(125, 7)
125

This calls an hypothetical quatern operation with four floating-point arguments:

quatern(3.4, 5.6, 2.9, 0.1)

If the operation has no arguments, you can omit the parenthesis. That is, these two ex-
pressions are equivalent:

say random()

and

say random

5.10 Long Lines

When you enter expressions from your keyboard, there will be time when they are too
long to fit on one line. Workspace for NetRexx does not care how long your lines are, so
you can let them continue from the right margin to the left side of the next line.
Alternatively, you may want to enter several shorter lines and have Workspace for
NetRexx glue them together. To get this glue, put an hyphen (-) at the end of each
line you wish to continue.

say 2 -
+ -
3

is the same as if you had entered
31

say 2 + 3

Comment statements begin with two consecutive hyphens and continue until the end of
the line.

say 2 + 3 -- this is rather simple, no?

The third way to accomplish this is to use the built-in multiline editing facility. Just press
[Esq]-[Enter] to continue with the next line of a multiline block - with the first [Enter]
key the whole block will be passed to the Workspace. These multiline blocks can also be
recalled and edited with arrow-up.

5.11 Numbers

Workspace for NetRexx distinguishes very carefully between different kinds of num-
bers, how they are represented and what their properties are.

5.12 Data Structures

Workspace for NetRexx has a large variety of data structures available. Many data struc-
tures are particularly useful for interactive computation and others are useful for build-
ing applications. The data structures of Workspace for NetRexx are organized into class
hierarchies.
A one-dimensional array is the most commonly used data structure in Workspace
for NetRexx for holding objects all of the same type. One-dimensional arrays are
inflexible—they are implemented using a fixed block of storage. They give equal ac-
cess time to any element.
Write an array of elements using square brackets with commas separating the elements:

a = [1, -7, 11]

The index of the first element is zero. This is the value of the third element:

say a[2]
11

An important point about arrays is that they aremutable: their constituent elements can
be changed in place:

a[2] = 5; say a[0] a[1] a[2]
1 -7 5

Examples of datatypes similar to one-dimensional arrays are: StringBuffer (arrays of
characters), and BitSet (represented by array of bits).

say BitSet(32)
{}

A list is another data structure used to hold objects. Unlike arrays, lists can contain ele-
ments of different non-primitive types. Also, lists are usually flexible.

32

A simple way to create a list is to apply the operation asList to an array of elements.
A vector is a cross between a list and a one-dimensional array. Like a one-dimensional
array, a vector occupies a fixed block of storage. Its block of storage, however, has room
to expand! When it gets full, it grows (a new, larger block of storage is allocated); when
it has too much room, it contracts.
This creates a vector of three elements:

f = Vector(asList([2, 7, -5]))

The addAll method inserts a list at a specified point. To insert some elements between
the second and third elements, use:

f.addAll(2, asList([11, -3])); say f
[2, 7, 11, -3, -5]

Vectors are used to implement ”stacks”. A stack is an example of a data structure where
elements are ordered with respect to one another.
An easy way to create a stack is to first create an empty stack and then to push elements
on it:

s = Stack(); s.push(”element1”); s.push(”element2”); s.push(”element3”)

This loop extracts elements one-at-a-time from s until the stack is exhausted, displaying
the elements starting from the top of the stack and going down to the bottom:

loop while \ s.empty; say s.pop; end
element3
element2
element1

(!!! to be continued)

5.13 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates with
elements that are themselves aggregates, for example, arrays of arrays, vectors of sets,
and so on.
(!!! to be continued)

5.14 Writing Your Own Functions

Java provides you with a very large library of predefined operations and objects to com-
pute with. You can use the Java Class Libraries to create new objects dynamically of quite
arbitrary complexity. Moreover, the libraries provides a wealth of operations that allow
you to create and manipulate these objects.
Formany applications, youneed to interactwith the interpreter andwrite someNetRexx
programs to tackle your application. Workspace for NetRexx allows you to write func-

33

tions interactively, thereby effectively extending the system library. Here I give a few
simple examples, leaving the details to The NetRexx Language reference manual and
related publications.
We begin by looking at several ways that the factorial function can be defined. The first
way is to use an if-then-else instruction.

method fact(n) static; if n < 3 then return n; else return n*fact(n-1)

say fact(50)
30414093201713378043612608166064768844377641568960512000000000000

A second definition directly uses iteration.

method fac(n) static; a = 1; loop i = 2 to n; a = a * i; end; return a

say fac(50)
30414093201713378043612608166064768844377641568960512000000000000

(!!!to be continued)

5.15 A Typical Session

(12) ->)clear all
(1) -> f = Frame()
(2) -> f.setTitle(”Hello world!”)
(3) -> f.setSize(200, 300)
(4) -> f.setPosition(20, 20)
2 +++ f.setPosition(20, 20)
+++ ^^^^^^^^^^^
+++ Error: The method ’setPosition(byte,byte)’ cannot be found in

class ’java.awt.Frame’ or a superclass
(5) -> f.setLocation(20, 20)
(6) -> f.setVisible(1)
(7) -> l = Label(’Hi there’)
(8) -> say f.getLayout
java.awt.BorderLayout[hgap=0,vgap=0]
(9) -> f.add(l, BorderLayout.CENTER)
(10) -> f.doLayout
(11) ->
(12) -> l.setForeground(Color.red)
(13) -> f.dispose
(14) ->)quit

5.16 Running Pipelines

When an input is not aNetRexx clause, or prefixed by an ’)’ (and it is a system command,
see next section) the only allowed command is ’pipe’. This enables us to run a pipeline

34

exactly as one would do in z/VM CMS. The built-in NetRexx Pipelines component is
used to execute a pipeline like one can do in the command shell of the operating system,
but with quotes. More about Pipelines can be found in the ’Pipelines for NetRexx quick
start guide. If you are used to running pipelines in CMS, you can just go ahead and try
a few things.

5.17 System Commands

We conclude our tour of Workspace for NetRexx with a brief discussion of system com-
mands. System commands are special statements that start with a closing parenthesis
(”)”). They are used to control or display your Workspace for NetRexx environment,
start operating system commands and leaveWorkspace for NetRexx. For example,)sys-
tem is used to issue commands to the operating system from Workspace for NetRexx.
Here is a brief description of some of these commands. Formore information on specific
commands, see Appendix 1.
Perhaps themost important user command is the)clear all command that initializes your
environment. Every section and subsection in this document has an invisible)clear all
that is read prior to the examples given in the section.)clear all gives you a fresh, empty
environment with no user variables defined and the step number reset to 1. The)clear
command can also be used to selectively clear values and properties of system variables.
Another useful system command is)read. A preferred way to develop an application in
Workspace for NetRexx is to put your interactive commands into a file, say my.input
file. To get Workspace for NetRexx to read this file, you use the system command)read
my.input. If you need to make changes to your approach or definitions, go into your
favorite editor, change my.input, then)read my.input again.
Other system commands include:)history, to display previous input lines;)display, to
display properties and values of workspace variables; and)what.
This conclude your tour of Workspace for NetRexx. To disembark, issue the system
command)quit to leave Workspace for NetRexx and return to the operating system.

5.18 Input Files and NetRexx Files

This section discusses how to collectWorkspace forNetRexx statements and commands
into files and then read the contents into the workspace. I also discuss NetRexx files,
which are a variation of input files.

5.19 Input Files

In this section I explain what an input file is and why you would want to know about it. I
discuss where Workspace for NetRexx looks for input files and how you can direct it to
look elsewhere. I also show how to read the contents of an input file into the workspace
and how to use the history facility to generate an input file from the statements you have
entered directly into the workspace.

35

An input file contains NetRexx expressions and system commands. Anything that you
can enter directly toWorkspace forNetRexx can be put into an input file.This is how you
save input functions and expressions that you wish to read into Workspace for NetRexx
more than one time.
To read an input file into Workspace for NetRexx, use the)read system command. For
example, you can read a file in a particular directory by issuing

)read /nrws/src/input/matrix.input

The ”.input” is optional; this also works:

)read /nrws/src/input/matrix

What happens if you just enter)read matrix.input or even)read matrix? Workspace for
NetRexx looks in your current working directory for input files that are not qualified
by a directory name. Typically, this directory is the directory from which you invoked
Workspace for NetRexx. To change the current working directory, use the)cd system
command. The command)cd by itself shows the current working directory. To change
it to the src/input subdirectory for user ”bar”, issue

)cd /user/bar/src/input

Workspace for NetRexx looks first in this directory for an input file. If it is not found, it
looks in the system’s directories, assuming you meant some input file that was provided
with Workspace for NetRexx.
If you have theWorkspace for NetRexx history facility turned on (which it is by default),
you can save all the lines you have entered into the workspace by entering

)history)write

Workspace for NetRexx tells you what input file to edit to see your statements. The file
is in your home directory or in the directory you specified with)cd.

5.20 The workspace.input File

When Workspace for NetRexx starts up, it tries to read the input file workspace.input
from your home directory. If there is no workspace.input in your home directory, it
reads the copy located in its own src/input directory. The file usually contains system
commands to personalize your Workspace for NetRexx environment. In the remainder
of this section Imention a few things that users frequently place in their workspace.input
files.
If you do not want to be prompted for confirmation when you issue the)quit system
command, place)set quit unprotected in workspace.input. If you then decide that you
do want to be prompted, issue)set quit protected. This is the default setting so that new
users do not leave Workspace for NetRexx inadvertently.
To see the other system variables you can set, issue)set.

36

5.21 The nrws.properties File

In this file, that is looked for in the home directory, a few parameters can be specified.
For example,

settings.prompt=nrws>
settings.timer=on
settings.quit=unprotected

indicates that the prompt will be nrws>, and the right side of the screen shows the com-
mand exection time instead of the framename. Furthermore, the)quit system command
(see next) quits immediately instead of prompting.

5.22 The nrws.history file(s)

For easy command history retrieval (using the arrow keys) the Workspace for NetRexx
stores executed commands in a nrws.history file in the current directory. This is buy de-
sign not a user global file, but is written to (and read from) the current directory because
it is plausible that different projects call for different command history.

5.23 Workspace for NetRexx System Commands

This chapter describes system commands, the command-line facilities used to control
the Workspace for NetRexx environment. The first section is an introduction and dis-
cusses the common syntax of the commands available.

5.24 Introduction

System commands are used to perform Workspace for NetRexx environment manage-
ment. Among the commands are those that display what has been defined or computed,
set upmultiple logicalWorkspace forNetRexx environments (frames), clear definitions,
read files of expressions and command, showwhat functions are available, and terminate
Workspace for NetRexx.
Each command listing begins with one or more syntax pattern descriptions plus exam-
ples of related commands. The syntax descriptions are intended to be easy to read and
do not necessarily represents the most compact way of specifying all possible arguments
and options; the descriptions may occasionally be redundant.
All systemcommands beginwith a right parenthesiswhich should be in the first available
column of the input line (that is, immediately after the input prompt, if any). System
commands may be issued directly to Workspace for NetRexx or be included in .input
files.
A system command argument is a word that directly follows the command name and is
not followed or preceded by a right parenthesis. A system command option follows the
command and is directly preceded by a right parenthesis. Options may have arguments:

37

they directly follow the option. This example may make it easier to remember what is an
option and what is an argument:

)syscmd arg1 arg2)opt1 opt1arg1 opt2arg2)opt2 opt2arg1 ...

In the system command descriptions, optional arguments and options are enclosed in
brackets (”[” and ”]”). If an argument or option name is in italics, it is meant to be a
variable and must have some actual value substituted for it when the system command
call is made. For example, the syntax pattern description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need not to use
the)quietly option. Thus

)read foo.input

is a valid instance of the above pattern.
System commands names and options may be abbreviated andmay be in upper or lower
case. The case of actual arguments may be significant, depending on the particular situ-
ation (such as in file names). System command names and options may be abbreviated
to the minimum number of starting letters so that the name or option is unique. Thus

)s Integer

is not a valid abbreviation for the)set command, because both)set and)show begin with
the letter ”s”. Typically, two or three letters are sufficient for disambiguating names. Inmy
descriptions of the commands, I have used no abbreviations for either command names
or options.
In some syntax descriptions I use a vertical line ”|” to indicate that you must specify one
of the listed choices. For example, in

)set foobar on | off

only on and off are acceptable words for following foobar. I also sometimes use ”...” to
indicate that additional arguments or options of the listed form are allowed. Finally, in
the syntax descriptions I may also list the syntax of related commands.

5.25)cd

Command Syntax:

)cd
)cd directory

Command Description:
This command sets the Workspace for NetRexx working directory. The current direc-
tory is used for looking for input files (for)read) and for writing history input files (for
)history)write).
If used with no argument, this command shows the current working directory. If an

38

argument is used, it must be a valid directory name. Except for the ”)” at the beginning
of the command, this has the same syntax as the operating system cd command.
Also See: ’)history’, and ’)read’.

5.26)clear

Command Syntax:

)clear all
)clear properties all
)clear properties obj1 [obj2 ...]

Command Description:
This command is used to remove functions and variable declarations, definitions and
values from the workspace. To empty the entire workspace and reset the step counter to
1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter ”p”.

)clear p all
)clear p x
)clear p x y f

The)display names and)display properties commands may be used to see what is cur-
rently in the workspace.
Also See: ’)display’, ’)history’.

5.27)display

Command Syntax:

)display all
)display properties
)display properties all
)display properties [obj1 [obj2 ...]]
)display type all

39

)display type [obj1 [obj2 ...]]
)display names

Command Description:
This command is used to display the contents of the workspace and signatures of func-
tions with a given name.
The command

)display names

list the names of all user-defined objects in the workspace. This is useful if you do not
wish to see everything about the objects and need only be reminded of their names.
The commands

)display all
)display properties
)display properties all

all do the same thing: show the values and types of all variables in the workspace. If you
have defined functions, their signatures and definitions will also be displayed.
To show all information about a particular variable or user functions, for example, some-
thing named d, issue

)display properties d

The word properties may be abbreviated to the single letter ”p”.

)display p all
)display p
)display p d

To just show the declared type of d, issue

)display type d
)display t d

Also See: ’)clear’, ’)history’, ’)set’, ’)show’, ’)what’.

5.28)frame

Command Syntax:

)frame new frameName
)frame drop [frameName]
)frame next
)frame last
)frame names
)frame import frameName [objectName1 [objectName2 ...]]
)set message prompt frame

Command Description:
40

A frame can be thought of as a logical session within the physical session that you get
when you start the system. You can have asmany frames as youwant, within the limits of
your computer’s storage, paging space, and so on. Each frame has its own step number,
environment and history. You can have a variable named a in one frame and it will have
nothing to do with anything that might be called a in any other frame.
To find out the names of all frames, issue

)frame names

It will indicate the name of the current frame.
You can create a new frame ”quark” by issuing

)frame new quark

If you wish to go back to what you were doing in the ”initial” frame, use

)frame next

or

)frame last

to cycle through the ring of available frames to get back to ”initial”.
If you want to throw away a frame (say ”quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.
You can bring things from another frame by using)frame import. For example, to bring
the f and g from the frame ”quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame ”quark”, issue

)frame import quark

You will be asked to verify that you really want everything.
There is one)set flag to make it easier to tell were you are.

)set message prompt frame

will give a prompt that looks like

initial (1) -> _

when you start up. In this case, the frame name and step make up the prompt.
Also See: ’)history’, ’)set’

5.29)help

Command Syntax:
41

)help
)help commandName

Command Description:
This command displays help information about system commands. If you issue

)help

a list of possible commands will be shown. You can also give the name or abbreviation
of a system command to display information about it. For example,

)help clear

will display the description of the)clear system command.

5.30)history

Command Syntax:

)history)on
)history)off
)history)show [n]
)history)write historyInputFileName
)set history on | off
)set history write protected | unprotected

Command Description:
The history facility within Workspace for NetRexx allows you to restore your environ-
ment to that of another session and recall previous computational results. Additional
commands allow you to create an .input file of the lines typed toWorkspace forNetRexx.
Workspace for NetRexx saves your input if the history facility is turned on (which is the
default). This information is saved if either of

)set history on
)history)on

has been issued. Issuing either

)set history off
)history)off

will discontinue the recording of information.
Each frame has its own history database.
The options to the)history commands are as follows:

)on

will start the recording of information. If the workspace is not empty, you will be asked
to confirm this request. If you do so, the workspace will be cleared and history data will
begin being saved. You can also turn the facility on by issuing)set history on.

42

)off

will stop the recording of information. The)history)show command will not work after
issuing this command. Note that this command may be issued to save time, as there is
some performance penalty paid for saving the environment data. You can also turn the
facility off by issuing)set history off.

)show [n]

can show previous input lines.)show will display up to twenty of the last input lines
(fewer if you haven’t typed in twenty lines).)show n will display up to n of the last input
lines.)write historyInputFile creates an .input file with the input typed since the start
of the session/frame or the last)clear all. If historyInputFile does not contain a period
(”.”) in the filename, .input is appended to it. For example,)history)write chaos and
)history)write chaos.input both write the input lines to a file called chaos.input in your
current working directory. You can edit this file and then use)read to have Workspace
for NetRexx process the contents. Also See: ’)frame’, ’)read’, ’)set’.

5.31)import

Command Syntax:

)import query
)import package packageName
)import class fullClassName
)import drop packageOrFullClassName

Command Description:
This command is used to query, set and remove imported packages.
When used with the query argument, this command may be used to list the names of all
imported packages and classes.
The following command lists all imported packages and classes.

)import query

To remove an imported package or class, the remove argument is used. This is usually
only used to correct a previous command that imported a package or a class. If, in fact,
the imported package or class does exist, you are prompted for confirmation of the re-
moval request. The following command will remove the imported package com.foo.bar
from the system:

)import drop com.foo.bar

Also See: ’)set’

5.32)numeric

Command Syntax:
43

)numeric
)numeric digits number
)numeric form scientific | engineering
)set numeric digits number
)set numeric form scientific | engineering

Command Description:
(!!! just like the numeric instruction)

5.33)options

Command Syntax:

)options
)options)default
)options option [)off]
)set option option on | off

Command Description:
This command is used to specify the options in use while interpreting statements.
To list all active options, simply issue
)options To restore options to their defaults settings, issue

)options)default

The possible value for option are

binary
decimal
explicit
strictargs
strictassign
strictcase
strictsignal
default :

nobinary
decimal
noexplicit
nostrictargs
nostrictassign
nostrictcase
nostrictsignal

Also See: ’)set’
44

5.34)package

Command Syntax:

)package
)package)default
)package packageName
)set package default | packageName

Command Description:
(!!! just like the package instruction)

5.35)pquit

Command Syntax:

)pquit

Command Description:
This command is used to terminate Workspace for NetRexx and return to the operating
system. Other than by redoing all your computations, you cannot return to Workspace
for NetRexx in the same state.
)pquit differs from the)quit in that it always asks for confirmation that you want to
terminate Workspace for NetRexx (the ”p” is for ”protected”). When you enter the)quit
command, Workspace for NetRexx responds
Please enter ”y” or ”yes” if you really want to leave the interactive environment and
return to the operating system. If you respond with y or yes, Workspace for NetRexx
will terminate and return you to the operating system (or the environment from which
you invoked the system). If you responded with something other that y or yes, then
Workspace for NetRexx would still be running.
Also See: ’)history’, ’)quit’, ’)system’.

5.36)quit

Command Syntax:

)quit
)set quit protected | unprotected

Command Description:
This command is used to terminate Workspace for NetRexx and return to the operating
system. Other than by redoing all your computations, you cannot return to Workspace
for NetRexx in the same state.
)quit differs from the)pquit in that it asks for confirmation only if the command

)set quit protected

45

has been issued. Otherwise,)quit will make Workspace for NetRexx terminate and re-
turn you to the operating system (or the environment from which you invoked the sys-
tem).
The default setting is)set quit protected so that)quit and)pquit behave the same way. If
you do issue

)set quit unprotected

I suggest that you do not (somehow) assign)quit to be executed when you press, say, a
function key.
Also See: ’)history’, ’)pquit’, ’)system’.

5.37)read

Command Syntax:

)read [fileName]
)read [fileName] [)quiet] [)ifthere]

Command Description:
This command is used to read .input files into Workspace for NetRexx. The command

)read matrix.input

will read the contents of the file matrix.input into Workspace for NetRexx. The ”.input”
file extension is optional. See Section 3.1 for more information about .input files.
This command remembers the previous file you read. If you do not specify a file name,
the previous file will be read.
The)ifthere option checks to see whether the .input file exists. If it does not, the)read
command does nothing. If you do not use this option and the file does not exist, you are
asked to give the name of an existing .input file.
The)quiet option suppresses output while the file is being read.
Also See: ’)history’

5.38)set

Command Syntax:

)set
)set label1 [... labelN]
)set label1 [... labelN] newValue

Command Description:
The)set command is used to view or set system variables that control what messages are
displayed, the type of output desired, the status of the history facility, and so on.
The following arguments are possible:

46

)set diag on | off

enables or disables verbose reporting of some run-time errors. (Used for debugging pur-
pose.)

)set display depth depth

specify the maximum number of elements to display when showing an array. (Default
value is 10.)

)set display depth

show the current display depth.

)set display level number

specify the maximum number of nested arrays to display when showing an array. (De-
fault value is 4.)

)set display level

show the current display level.

)set history write protected | unprotected

specify whether or not to prompt for confirmation when attempting to overwrite an
existing file with)history)write.

)set history on | off

enables or disables history.

)set import add class className
)set import add package packageName
)set import drop class className
)set import drop package packageName

adds or removes specified class or package from import list.

)set import

shows the currently imported statements.

)set interpreter on | off

set the interpreter status. If on, then valid statements will be executed. If off, then no
execution will be attempted. (Mostly used for debugging purpose, or if you want to use
Workspace for NetRexx on a pre-java2 platform.)

)set message prompt default
)set message prompt frame
)set message prompt label label

set the prompt status (frame displays the current frame name).

)set message prompt

shows the current prompt status.
47

)set numeric digits number

set the default numeric digits (i.e., for the current frame and all subsequent frames).

)set numeric digits

shows the current default numeric digits value.

)set numeric form scientific | engineering

set the default numeric form (i.e., for the current frame and all subsequent frames).

)set numeric form

shows the current default numeric form.

)set option option on | off

set the default activity of option option (i.e., for the current frame and all subsequent
frames). option being one of : binary, decimal, explicit, strictargs, strictassign, strictcase,
or strictsignal.

)set option option

shows the current option status.

)set package default
)set package packageName

set the current package name.

)set package

shows the current package name.

)set parser quiet | verbose

disables or enables verbose output from the parser. (Used for debugging purposes.)

)set quit protected | unprotected

set the quit status.

)set quit

shows the current quit status.

)set screen width number

set the screen width (in character).

)set screen width

shows the screen width.

)set show all | declared

set the amount of information displayed by the)show command.

)set show

48

shows the current show status.

)set trace
)set trace all | off | methods | results

set the default trace level (i.e., for the current frame and all subsequent frames).

)set use add className
)set use drop className

adds or removes specified class name from use list.

)set use

shows the current use list. Also See: ’)quit’, ’)show’

5.39)show

Command Syntax:

)show nameOrAbbrev
)show nameOrAbbrev)operations
)show nameOrAbbrev)attributes
)set show all | declared

Command Description:
This commands displays information about classes. If no options are given, the)opera-
tions option is assumed. For example,

)show Rectangle
)show Rectangle)operations
)show java.awt.Rectangle
)show java.awt.Rectangle)operations

each display basic information about the java.awt.Rectangle class constructors and then
provide a listing of operations.
The basic information displayed includes the signature of the constructors and the op-
erations.
Also See: ’)display’, ’)set’

5.40)synonym

Command Syntax:

)synonym
)synonym synonym fullCommand
)what synonyms

Command Description:
49

This command is used to create short synonyms for system command expressions. For
example, the following synonyms might simplify commands you often use.

)synonym prompt set message prompt
)synonym mail system mail
)synonym ls system ls

Once defined, synonyms can be used in place of the longer command expressions. Thus

)prompt frame

is the same as the longer

)set message prompt frame

To list all defined synonyms, issue either of

)synonym
)what synonym

To list, say, all synonyms that contain the substring ”ap”, issue

)what synonym ap

Also See: ’)set’, ’what’

5.41)system

Command Syntax:

)system cmdExpression

Command Description:
This commandmay be used to issue commands to the operating systemwhile remaining
in Workspace for NetRexx. The cmdExpression is passed to the operating system for
execution.
If you execute programs that misbehave you may not be able to return to Workspace for
NetRexx. If this happens, you may have no other choice than to restart Workspace for
NetRexx and restore the environment via)history)restore, if possible.
Also See: ’)pquit’, ’)quit’

5.42)trace

Command Syntax:

)trace
)trace off
)trace all
)trace methods
)trace results

50

)trace var [var1 [var2 ...]]

Command Description:
This command is used to trace the execution of statements and functions defined by
users.
To list all currently enabled trace functions, simply issue

)trace

To untrace everything that is traced, issue

)trace off

(!!! to be continued, just like the trace instruction)

5.43)use

Command Syntax:

)use query
)use add className
)use drop className

Command Description:
(!!! like the uses phrase in class instruction)

5.44)what

Command Syntax:

)what commands pattern1 [pattern2 ...]
)what synonym pattern1 [pattern2 ...]
)what things pattern1 [pattern2 ...]
)apropos pattern1 [pattern2 ...]

Command Description:
This command is used to display lists of things in the system. The patterns are all strings
and, if present, restrict the contents of the lists. Only those items that contain one or
more of the strings as substrings are displayed. For example,

)what synonyms

displays all command synonyms,

)what synonyms ver

displays all command synonyms containing the substring ”ver”,

)what synonyms ver pr

51

displays all command synonyms containing the substring ”ver” or the substring ”pr”.
Output similar to the following will be displayed
—————— System Command Synonyms ——————
user-defined synonyms satisfying patterns: ver pr

)apr)what things
)apropos)what things
)prompt)set message prompt

Several other things can be listed with the)what command:
commands displays a list of system commands available. To get a description of a par-
ticular command, such as ”)what”, issue)help what. synonyms lists system command
synonyms. things displays all of the above types for items containing the pattern strings
as substrings. The command synonym)apropos is equivalent to)what things. Also See:
’)display’, ’)set’, and ’)show’

52

6

Unicode

The JVM works with Unicode as a string representation; for this reason the display of
characters in alphabets other than the latin alphabet does not pose a problem. To work
withUnicode and internationalization in a straightforwardway, a combination of factors
must be present. The operating system, your editor, shell and character set support must
be compatible with Unicode. A set fonts very seldom contains glyphs20 for all Unicode
code points (values). Be certain to save the program file as the right type; some editors
can save as ASCII, UTF-8 and UTF-16. Some editors seem to support Unicode but have
made mistakes in the implementation. The NetRexx translator has a -utf8 option that
makes it accept this encoding in the source. This option is not necessary for the use of
Unicode in variables - this always works, it being the native encoding of the JVM. The
option is rather meant to enable specification of NetRexx syntax elements in Unicode.
This makes it possible to use Class names, Method names and variable names composed
of Unicode characters.
Some things to think of when using the -utf8 option:
. It is not the default.. The option -utf8 can be specified in the program source, but the value of this op-

tion on the compiler command line must be equal to the value of the program
option. Here the rule that the last specified value for an option is applicable, does
not count. When method names are specified in Unicode, they need to be symbols and not
escaped Unicode characters. WhenUnicode is used in a Class name, the program file namemustmatch the class
name.. A filename in Unicode might still spell trouble when using it in conjunction with
version management software, sharing it using email or other usages that are not
limited to one file system and encoding method.

20This is a typographical term for character form

53

7

Running on a JRE-only environment

7.1 Eclipse Batch Compiler

NetRexx can be used on a JRE-only environment; it3.01 does not need an SDK (JDK) when
the included ecj (Eclipse Compiler for Java) jar file is available on the classpath. This
compiler is a part of the Eclipse JDT Core, which is the Java infrastructure of the Java
IDE. This is an incremental Java compiler. It is based on technology evolved from the
VisualAge for Java compiler and maintained by IBM and the Eclipse Foundation. In
particular, it allows one to run and debug code which still contains unresolved errors.
Future releases of NetRexxmight be exploringmore of the features of this compiler, like
the extensive error reporting. Currently, the ecj-4.6.3.jar level of the core compiler jar is
delivered with NetRexx. There are other standalone Java compilers, but after extensive
research we have chosen to include this one. Using the –nocompile and –keepasjava op-
tions it is always possible to substitute your own compilers as subsequent stages in the
build process.

7.2 The -ecj and -javac translator options

The NetRexx language processor is a translator package that either interprets or exe-
cutes NetRexx language source, and (by default) compiles the generated Java language
source code with the SDK-included javac compiler, or rather, the Java compiler class
sun.tools.javac.Main class that is delivered (in most implementations) in the tools.jar
file, which is also called by the javac executable. An option3.04 is introduced to make the
language processor choose the ecj compiler.

nrc -ecj sourcefile.nrx

This directs the NetRexxC processor to use the ecj compiler to do the java compile step
instead of javac. This option can also be set to javac - which is still the default when the
option is not specified. The NetRexxC command script can, on systems that do not have
a javac compiler installed, be changed to state

java org.netrexx.process.NetRexxC -ecj $*

In this case all compiles started with the nrc command will use the Eclipse compiler.
Only in case of Java compiler errors, when the compiler output will be shown, will the
difference be apparent. Installer support is planned to include this property automat-
ically when during NetRexx installation the javac compiler jar is not detected. When
compiling using the -time option, the right compiler name will be indicated.

54

7.3 The netrexx_java environment variable

The NetRexxC compile scripts pass the environment variable netrexx_java to the Java
VM at start. The compiler selection can be placed in the environment (in a slightly
adapted and more historic form) and no change to the NetRexxC script is required.
In Windows for example:

set netrexx_java=-Dnrx.compile=ecj

7.4 Passing options to the Java Compiler

A scan will be performed for a suitable compiler when the preferred one is not found. 3.04
The Java system property ”nrx.compiler” can be used to provide options for the Java
compiler called by NetRexx. This property is set on starting the NetRexx translator as in
this example:

java -Dnrx.compiler=”-target 1.6” org.netrexx.process.NetRexxC myprogram

If the first option specified is ”javac” or ”ecj”, NetRexx will use that option to prefer se-
lection of a compiler although the ”-javac” and ”-ecj” translator options will override it.
Other options are passed to the Java compiler unchanged. If you are using the Windows
script ”nrc.bat” to compile programs, you can place the system property in the Windows
environment to make it automatic as in this example:

set netrexx_java=-Dnrx.compiler=”ecj -source 1.6 -target 1.6”

The nrx.compiler property can also be set directly in Ant builds or via the Ant project
property ”ant.netrexxc.javacompiler”.

7.5 Interpreting

For completeness, it is confirmed here that interpretative execution also works on a JRE-
only system, and does not require a Java compiler. The NetRexx translator produces the
required bytecode and proxy classes without any need for a Java compiler.

55

8

Using the translator

This section of the document tells you how to use the translator package. It assumes you
have successfully installed Java and NetRexx, and have tested that the hello.nrx testcase
can be compiled and run, as described in the Testing the NetRexx Installation (section
3.7 on page 22).
The NetRexx translator may be used as a compiler or as an interpreter (or it can do both
in a single run, so parsing and syntax checking are only carried out once). It can also be
used as simply a syntax checker.
When used as a compiler, the intermediate Java source code may be retained, if desired.
Automatic formatting, and the inclusion of comments from the NetRexx source code
are also options.

8.1 Using the translator as a compiler

The installation instructions for the NetRexx translator describe how to use the package
to compile and run a simple NetRexx program (hello.nrx). When using the translator in
this way (as a compiler), the translator parses and checks the NetRexx source code, and
if no errors were found then generates Java source code. This Java code is then compiled
into bytecodes (.class files) using a Java compiler, in a process called AOT compilation.
By default, the javac compiler in the Java toolkit is used.
This section explains more of the options available to you when using the translator as a
compiler.

8.2 The translator command

The translator is invoked by running a Java program (class) which is called

org.netrexx.process.NetRexxC

(NetRexxC, for short). This can be run by using the Java interpreter, for example, by the
command:

java org.netrexx.process.NetRexxC

or by using a system-specific script (such as NetRexxC.cmd. or nrc.bat). In either case,
the compiler invocation is followed by one or more file specifications (these are the
names of the files containing the NetRexx source code for the programs to be com-
piled).

56

File specificationsmay include a path; if no path is given thenNetRexxCwill look in the
current (working) directory for the file. NetRexxC will add the extension .nrx to input
program names (file specifications) if no extension was given.
So, for example, to compile hello.nrx in the current directory, you could use any of:

java org.netrexx.process.NetRexxC hello
java org.netrexx.process.NetRexxC hello.nrx
NetRexxC hello.nrx
nrc hello

(the first two should always work, the last two require that the system-specific script
be available). The resulting .class file is placed in the current directory, and the .crossref
(cross-reference) file is placed in the same directory as the source file (if there are any
variables and the compilation has no errors).
Here is an example of compiling twoprograms, one ofwhich is in the directoryd:\myprograms:

nrc hello d:\myprograms\test2.nrx

In this case, again, the .class file for each program is placed in the current directory.
Note that when more than one program is specified, they are all compiled within the
same class context. That is, they can see the classes, properties, and methods of the other
programs being compiled, much as though they were all in one file. 21 This allows mu-
tually interdependent programs and classes to be compiled in a single operation. Note
that if you use the package instruction you should also read themore detailedCompiling
multiple programs section.
On completion, the NetRexxC class will exit with one of three return values: 0 if the
compilation of all programswas successful, 1 if there were one ormoreWarnings, but no
errors, and 2 if there were one or more Errors. The result can be forced to 0 for warnings
only with the -warnexit0 option.
As well as file names, you can also specify various option words, which are distinguished
by theword being prefixedwith -.These flaggedwords (or flags)may be any of the option
words allowed on the NetRexx options instruction (see the NetRexx languagen doc-
umentation, and the below paragraph). These options words can be freely mixed with
file specifications. To see a full list of options, execute the NetRexxC command without
specifying any files. As this command states, all options may have prefix ’no’ added for
the inverse effect.

8.2.1 Options

There are a number of options for the translator, some of which can be specified on the
translator command line, and others also in the program source on the option state-
ment. In the following table, c stands for commandline only, and b stands for both source
and commandline. On the commandline, options are prefixed with a dash (“-”), while in
programsource they are not - there they are preceded by the option statement.

21The programs do, however, maintain their independence (that is, they may have different options, import, and package in-
structions).

57

TABLE 1: Options

Option Meaning Place

arg words interpret; remaining words are arguments c
binary classes are binary classes b
classpath specify a classpath c
compile compile (default; -nocompile implies -keep) c
comments copy comments across to generated .java b
compact display error messages in compact form b
console display messages on console (default) c
crossref generate cross-reference listing b
decimal allow implicit decimal arithmetic b
diag show diagnostic messages b
ecj prefer the ecj compiler c
exec interpret with no argument words c
explicit local variables must be explicitly declared b
format format output file (pretty-print) b
java generate Java source code for this program b
javac prefer the javac compiler c
keep keep any completed .java file (as xxx.java.keep) c
keepasjava keep any completed .java file (as xxx.java) c
logo display logo (banner) after starting b
prompt prompt for new request after processing c
savelog save messages in NetRexxC.log c
replace replace .java file even if it exists b
sourcedir force output files to source directory b
strictargs empty argument lists must be specified as () b
strictassign assignment must be cost-free b
strictcase names must match in case b
strictimport all imports must be explicit b
strictmethods superclass methods are not compared to local methods for

best match
b

strictprops even local properties must be qualified b
strictsignal signals list must be explicit b
symbols include symbols table in generated .class files b
time display timings c
trace[n] trace stream [1 or 2], or 0 for NOTRACE b
utf8 source file is in UTF8 encoding b
verbose[n] verbosity of progress reports [0-5] b
warnexit0 exit with a zero returncode on warnings c

Options valid for the options statement and on the commandline

These are the options that can be used on the options statement:

58

binary All classes in this program will be binary classes. In binary classes, literals are
assigned binary (primitive) or native string types, rather than NetRexx types, and
native binary operations are used to implement operators where appropriate, as
described in “Binary values and operations”. In classes that are not binary, terms in
expressions are converted to the NetRexx string type, Rexx, before use by opera-
tors.

comments Comments from the NetRexx source programwill be passed through to the
Java output file (which may be saved with a .java.keep or .java extension by using
the -keep and -keepasjava command options, respectively).

compact Requests that warnings and errormessages be displayed in compact form.This
format ismore easily parsed than the default format, and is intended for use by edit-
ing environments. Each error message is presented as a single line, prefixed with
the error token identification enclosed in square brackets. The error token iden-
tification comprises three words, with one blank separating the words. The words
are: the source file specification, the line number of the error token, the column in
which it starts, and its length. For example (all on one line):

[D:\test\test.nrx 3 8 5] Error: The external name
’class’ is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null (’\0’) character. Additional
words could be added to the error token identification later.

crossref Requests that cross-reference listings of variables be prepared, by class.
decimal Decimal arithmetic may be used in the program. If nodecimal is specified, the

language processor will report operations that use (or, like normal string com-
parison, might use) decimal arithmetic as an error. This option is intended for
performance-critical programs where the overhead of inadvertent use of decimal
arithmetic is unacceptable.

diag Requests that diagnostic information (for experimental use only) be displayed.The
diag option word may also have side-effects.

explicit Requires that all local variables must be explicitly declared (by assigning them
a type but no value) before assigning any value to them. This option is intended
to permit the enforcement of “house styles” (but note that the NetRexx compiler
always checks for variables which are referenced before their first assignment, and
warns of variables which are set but not used).

format Requests that the translator output file (Java source code) be formatted for im-
proved readability. Note that if this option is in effect, line numbers from the input
file will not be preserved (so run-time errors and exception trace-backs may show
incorrect line numbers).

java Requests that Java source code be produced by the translator. If nojava is specified,
no Java source code will be produced; this can be used to save a little time when
checking of a program is required without any compilation or Java code resulting.

logo Requests that the language processor display an introductory logotype sequence
(name and version of the compiler or interpreter, etc.).

sourcedir Requests that all .class files be placed in the same directory as the source file
from which they are compiled. Other output files are already placed in that di-

59

rectory. Note that using this option will prevent the -run command option from
working unless the source directory is the current directory.

strictargs Requires that method invocations always specify parentheses, even when
no arguments are supplied. Also, if strictargs is in effect, method arguments are
checked for usage – a warning is given if no reference to the argument is made in
the method.

strictassign Requires that only exact type matches be allowed in assignments (this is
stronger than Java requirements). This also applies to the matching of arguments
in method calls.

strictcase Requires that local and external name comparisons for variables, properties,
methods, classes, and special words match in case (that is, names must be identical
to match).

strictimport Requires that all imported packages and classes be imported explicitly us-
ing import instructions. That is, if in effect, there will be no automatic imports,
except those related to the package instruction.

strictmethods Superclass methods are not compared to local methods for best match.
strictprops Requires that all properties, including those local to the current class, be

qualified in references. That is, if in effect, local properties cannot appear as simple
names but must be qualified by this. (or equivalent) or the class name (for static
properties).

strictsignal Requires that all checked exceptions signalled within a method but not
caught by a catch clause be listed in the signals phrase of the method instruction.

symbols Symbol table information (names of local variables, etc.) will be included in
any generated .class file.This option is provided to aid the production of classes that
are easy to analysewith tools that canunderstand the symbol table information.The
use of this option increases the size of .class files.

trace, traceX If given as -trace, -trace1, or -trace2, then trace instructions are accepted.
The trace output is directed according to the option word: -trace1 requests that
trace output is written to the standard output stream, -trace or -trace2 imply that
the output should be written to the standard error stream (the default).

utf8 If given, clauses following the options instruction are expected to be encoded us-
ing UTF-8, so all Unicode characters may be used in the source of the program.
In UTF-8 encoding, Unicode characters less than ’\u0080’ are represented using
one byte (whose most-significant bit is 0), characters in the range ’\u0080’ through
’\u07FF’ are encoded as two bytes, in the sequence of bits:

110xxxxx 10xxxxxx

where the eleven digits shown as x are the least significant eleven bits of the char-
acter, and characters in the range ’\u0800’ through ’\uFFFF’ are encoded as three
bytes, in the sequence of bits:

1110xxxx 10xxxxxx 10xxxxxx

where the sixteen digits shown as x are the sixteen bits of the character. If noutf8
is given, following clauses are assumed to comprise only Unicode characters in the
range ’\x00’ through ’\xFF’, with the more significant byte of the encoding of each
character being 0. Note: this option only has an effect as a compiler option, and
applies to all programs being compiled. If present on an options instruction, it is

60

checked and must match the compiler option (this allows processing with or with-
out utf8 to be enforced).

verbose, verboseX Sets the “noisiness” of the language processor. The digit X may be
any of the digits 0 through 5; if omitted, a value of 3 is used.The options -noverbose
and verbose0 both suppress all messages except errors and warnings

Options valid on the commandline

The translator also implements some additional option words, which control compila-
tion features. These cannot be used on the options instruction22, and are:

arg The -argwords option is used when interpreting programs, it indicates that after the
-arg statement, commandline arguments for ther interpreted program follow

classpath The -classpath option allows dynamic specification of the classpath used by
the NetRexxC compiler without having to depend on the CLASSPATH environ-
ment variable. (since: NetRexx 3.02) .

exec The -exec words option is used when interpreting programs. With this option, no
commandline arguments are possible.

ecj prefer the ecj compiler when available
keep keep the intermediate .java file for each program. It is kept in the same directory

as the NetRexx source file as xxx.java.keep, where xxx is the source file name. The
file will also be kept automatically if the javac compilation fails for any reason.

javac prefer the javac compiler when available
keepasjava keep the intermediate .java file for each program. It is kept in the same di-

rectory as the NetRexx source file as xxx.java, where xxx is the source file name.
Implies -replace. Note: use this option carefully in mixed-source projects where
you might have .java source files around.

nocompile do not compile (just translate). Use this option when you want to use a dif-
ferent Java compiler. The .java file for each program is kept in the same directory
as the NetRexx source file, as the file xxx.java.keep (where xxx is the source file
name).

noconsole do not display compiler messages on the console (command display screen).
This is usually used with the savelog option.

savelog write compiler messages to the fileNetRexxC.log, in the current directory. This
is often used with the noconsole option.

time display translation, javac or ecj compile, and total times (for the sum of all pro-
grams processed).

run run the resulting Java class as a stand-alone application, provided that the compi-
lation had no errors.

warnexit0 Exit the translator with returncode 0 even if warnings are issued. Useful with
build tools that would otherwise exit a build.

Here are some examples:

java org.netrexx.process.NetRexxC hello -keep -strictargs
java org.netrexx.process.NetRexxC -keep hello wordclock

22Although at the moment, there will be no indication of this

61

java org.netrexx.process.NetRexxC hello wordclock -nocompile
nrc hello
nrc hello.nrx
nrc -run hello
nrc -run Spectrum -keep
nrc hello -binary -verbose1
nrc hello -noconsole -savelog -format -keep

Optionwordsmay be specified in lowercase,mixed case, or uppercase. File specifications
are platform-dependent and may be case sensitive, though NetRexxC will always prefer
an exact case match over a mismatch.
Note: The -run option is implemented by a script (such as nrc.bat or NetRexxC.cmd),
not by the translator; some scripts (such as the .bat scripts) may require that the -run be
the first word of the command arguments, and/or be in lowercase.Theymay also require
that only the name of the file be given if the -run option is used. Check the commentary
at the beginning of the script for details.

8.3 Compiling multiple programs and using packages

When you specify more than one program for NetRexxC to compile, they are all com-
piledwithin the same class context: that is, they can see the classes, properties, andmeth-
ods of the other programs being compiled, much as though they were all in one file.
This allows mutually interdependent programs and classes to be compiled in a single
operation. For example, consider the following two programs (assumed to be in your
current directory, as the files X.nrx and Y.nrx):

Listing 8.1: Dependencies
1 /* X.nrx */
2 class X
3 why=Y null
4

5 /* Y.nrx */
6 class Y
7 exe=X null

Each contains a reference to the other, so neither can be compiled in isolation. However,
if you compile them together, using the command:

nrc X Y

the cross-references will be resolved correctly.
The total elapsed time will be significantly less, too, as the classes on the CLASSPATH
need to be located only once, and the class files used by the NetRexxC compiler or the
programs themselves will also only be loaded (and JIT-compiled) once.
This example works as youwould expect for programs that are not in packages.There is a
restriction, though, if the classes you are compiling are in packages (that is, they include
a package instruction). NetRexxC uses either the javac compiler or the Eclipse batch
compiler ecj to generate the .class files, and for mutually-dependent files like these; both
require the source files to be in the Java CLASSPATH, in the sub-directory described by

62

the package instruction.
So, for example, if your project is based on the tree:
D:\myproject
if the two programs above specified a package, thus:

Listing 8.2: Package Dependencies
1 /* X.nrx */
2 package foo.bar
3 class X
4 why=Y null
5

6 /* Y.nrx */
7 package foo.bar
8 class Y
9 exe=X null

1. You should put these source files in the directory: D:\myproject\foo\bar
2. ThedirectoryD:\myproject should appear in yourCLASSPATHsetting (if you don’t

do this, javac will complain that it cannot find one or other of the classes).
3. You should then make the current directory be D:\myproject\foo\bar and then

compile the programs using the command nrc X Y, as above.

With this procedure, you should end up with the .class files in the same directory as the
.nrx (source) files, and therefore also on the CLASSPATH and immediately usable by
other packages. In general, this arrangement is recommended whenever you are writing
programs that reside in packages.
Notes:

1. When javac is used to generate the .class files, no new .class files will be created if
any of the programs being compiled together had errors - this avoids accidentally
generating mixtures of new and old .class files that cannot work with each other.

2. If a class is abstract or is an adapter class then it should be placed in the list before
any classes that extend it (as otherwise any automatically generated methods will
not be visible to the subclasses).

63

9

Programmatic use of the NetRexxC translator

Programmatic use of the translator - the compiler(NetRexxC) and the interpreter (Net-
RexxA) - used to be in this chapter, but the options to do this have multiplied over the
years, and are now beyond the scope of this Quick Start Guide. They are documented in
the Programming Guide.

64

10

Using the prompt option

The prompt option may be be used for interactive invocation of the translator. This re-
quests that the processor not be ended after a file (or set of files) has been processed.
Instead, you will be prompted to enter a new request. This can either repeat the process
(perhaps if you have altered the source in the meantime), specify a new set of files, or
alter the processing options.
On the second and subsequent runs, the processor will re-use class information loaded
on the first run. Also, the classes of the processor itself (and the javac compiler, if used)
will not need to be verified and JIT-compiled again. These savings allow extremely fast
processing, as much as fifty times faster than the first run for small programs.
When you specify -prompt on a NetRexxC command, the NetRexx program (or pro-
grams) will initially be processed as usual, according to the other flags specified. Once
processing is complete, you will be prompted thus:

Enter new files and additional options, ’=’ to repeat, ’exit’ to end:

.
At this point, you may enter:
. One or more file names (with or without additional flags): the previous process,

modified by any new flags, is repeated using the source file or files specified. Files
named previously are not included in the process (unless they are named again in
the new list of names).. Additional flags (without any new files): the previous process, modified by the new
flags, is repeated, on the same files as before. Note that flags are accumulated; that
is, flags are not reset to defaults between prompts.. The character = this simply repeats the previous process, on the same file or files
(which may have had their contents changed since the last process) and using the
same flags. This is especially useful when you simply wish to re-compile (or re-
interpret, see below) the same file or files after editing.. The word exit, which causes NetRexxC to cease execution without any more
prompts.. Nothing (just press Enter or the equivalent) – usage hints, including the full list of
possible options, etc., are displayed and you are then prompted again.

65

11

Using the translator as an Interpreter

In addition to being used as a compiler, the translator also includes a true NetRexx in-
terpreter, allowing NetRexx programs to be run on the Java 2 (1.2) platform without
needing a compiler or generating .class files.
The startup time for running programs can therefore be significantly reduced as no Java
source code or compilation is needed, and also the interpreter can give better runtime
support (for example, exception tracebacks are localized to the programs being inter-
preted, and the location of an exception will be identified often to the nearest token in a
term or expression).
Further, in a single run, a NetRexx program can be both interpreted and then compiled.
This shares the parsing between the two processes, so the .class file is produced without
the overhead of re-translating and re-checking the source.

11.0.1 Interpreting programs

TheNetRexx interpreter is currently designed to be fully compatible with NetRexx pro-
grams compiled conventionally. There are some minor restrictions (see section 17 on
page 78), but in general any program that NetRexxC can compile without error should
run. In particular, multiple programs, threads, event listeners, callbacks, and Minor (in-
ner) classes are fully supported.
To use the interpreter, use the NetRexxC command as usual and specify either of the
following command options (flags):

-exec after parsing, execute (interpret) the program or programs by calling the static
main(String[]) method on the first class, with an empty array of strings as the ar-
gument. (If there is no suitable main method an error will be reported.)

-arg words... as for -exec, except that the remainder of the command argument string
passed toNetRexxCwill be passed on to themainmethod as the array of argument
strings, instead of being treated as file specifications or flags. Specifying -noarg is
equivalent to specifying -exec; that is, an empty array of argument strings will be
passed to the main method (and any remaining words in the command argument
string are processed normally).

When any of -exec, -arg, or -noarg is specified, NetRexxC will first parse and check
the programs listed on the command. If no error was found, it will then run them by
invoking the main method of the first class interpretively.
Before the run starts, a line similar to:

===== Exec: hello =====

66

will be displayed (you can stop this and other progress indicators being displayed by
using the -verbose0 flag, as usual).

For example, to interpret the hello world program without compilation, the command:

nrc hello -exec -nojava

can be used. If you are likely to want to re-interpret the program (for example, after
changing the source file) then also specify the -prompt flag, as described above. This will
give very much better performance on the second and subsequent interpretations.
Similarly, the command:

nrc hello -nojava -arg Hi Fred!

would invoke the program, passing the words Hi Fred! as the argument to the program
(you might want to add the line say arg to the program to demonstrate this).
You can also invoke the interpreter directly from another NetRexx or Java program, as
described in The NetRexx Programming Guide.

11.1 Interpreting – Hints and Tips

When using the translator as an interpreter, you may find these hints useful:
. If you can, use the -prompt command line option (see above). This will allow very

rapid re-interpretation of programs after changing their source.. If you don’t want the programs to be compiled after interpretation, specify the -
nojava option, unless you want the Java source code to be generated in any case (in
which case specify -nocompile, which implies -keep).. By default, NetRexxC runs fairly noisily (with a banner and logo display, and
progress of parsing being shown). To turn off these messages during parsing (ex-
cept error reports and warnings) use the -verbose0 flag.. If you are watching NetRexx trace output while interpreting, it is often a good idea
to use the -trace1flag.This directs trace output to the standard output stream,which
will ensure that trace output and other output (for example, from say instructions)
are synchronized.. Use the NetRexx exit instruction (rather than the System.exit() method call) to
end windowing (AWT) applications which are to be interpreted. This will allow
the interpreter to correctly determine when the application has ended.

11.2 Interpreting – Performance

Theinterpreter, in the current implementation, directly and efficiently interpretsNetRexx
instructions. However, to assure the stability of the code, terms and expressions within
instructions are currently fully re-parsed and checked each time they are executed. This
has the effect of slowing the execution of terms and expressions significantly; perfor-
mance measurements on the initial release are therefore unlikely to be representative of
later versions that might be released in the future.

67

For example, at present a loop controlled using loop for 1000 will be interpreted around
50 times faster than a loop controlled by loop i=1 to 1000, even in a binary method,
because the latter requires an expression evaluation each time around the loop.

68

12

Installing on an IBMMainframe

12.0.1 EBCDIC Systems: z/OS, z/VM

Prerequisites for z/OS

To use NetRexx on z/OS you must have access to an OMVS prompt (z/OS Unix Sys-
tems Services23 shell for 3270 terminals), or have access using ssh or telnet; Java must be
installed.
Access to the OMVS command can be regulated through a security profile, so your
useridmust be in the right RACF, ACF2 or TOP SECRET class. You will need a home di-
rectory specified in this OMVS class, and this directory needs to be mounted, preferably
as a permanent mount.
If this is arranged and working, you need to verify if there is a Java runtime available.
Test this with the command

java -version

Java 1.6, or more recent, is needed for NetRexx 3.11-GA.

Uploading the NetRexx translator jar

TheNetRexxbinaries are identical for all operating systems; the sameNetRexxC.jar runs
everywhere24. However, during installation it is important to ensure that binary files are
treated as binary files, whereas text files (such as the accompanying HTML and sample
files) need to be translated to the local code page as required.
The simplest way to do this is to first install the package on a workstation, following the
instructions above, then copy or FTP the files you need to the mainframe. The files need
to be placed in an HFS to be used by OMVS; FTP and sftp can directly place the files in
an HFS or ZFS home directory, while IND$FILE can place them into a traditional data
set.
Specifically:

. The NetRexxC.jar file should be copied as-is, that is, use FTP or other file transfer
with the BINARYoption.Note that sftp defaults to binary, while scp to z/OS trans-
lates ASCII to EBCDIC and is not usable for this purpose.TheCLASSPATH should
be set to include this NetRexxC.jar file. When using IND$FILE as a file transfer
mechanism to a traditional MVS data set, make sure it is allocated as a load library

23IBM Manuals SA22-7801-12 “Unix System Services User’s Guide” and SA22-7802-12 “Unix System Services Reference”
24Thanks to Mark Cathcart and John Kearney for contributing the details to the original version of this section.

69

with lrecl 0 and a large blocksize. A variable length record also works, for ex-
ample, a dataset defined as dsorg=ps, recfm=vb, lrecl=1250, blksize=12500
works without a problem.. Other files (documentation, etc.) should be copied as Text (that is, they will be
translated from ASCII to EBCDIC). This can be done by specifying type TEXT on
the ftp command, or use the ASCII CRLF option on the IND$FILE command.

In general, fileswith extension .au, .class, .gif, .jar, or .zip are binary files; all others are text
files. Youmay opt to leave the additional files on aworkstation, themainframe really only
needs the .jar file, NetRexxC.jar (or NetRexxR.jar if you are only planning to run already
compiled classfiles). Setting the classpath might look like this for a Java 1.6 installation
on a recent z/OS:

JAVA_HOME=/opt/ibm/java-s390x-60
export JAVA_HOME
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar
CLASSPATH=$CLASSPATH:$JAVA_HOME/jre/lib/s390x/default/jclSC160/vm.jar
CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar
export CLASSPATH

For a Java 1.6.1 installation, the following settings were encountered:

JAVA_HOME=/usr/lpp/java/J6.0.1
export JAVA_HOME
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/s390/default/jclSC160/vm.jar
CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar
export CLASSPATH

For a 64 bits Java 1.7.0 installation, these settings work:

JAVA_HOME=/usr/lpp/java/J7.0_64
export JAVA_HOME
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar
CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/s390x/default/jclSC170/vm.jar
CLASSPATH=$CLASSPATH:/u/[your userid]/lib/NetRexxC.jar
export CLASSPATH

Note that you are free to put the NetRexxC.jar archive in any location, as long as the
classpath correctly refers to it. The vm.jar has to be on the classpath because otherwise
Object.class will not be found by the NetRexxC translator.
The OCOPY command can be used under TSO to copy the uploaded NetRexxC.jar to a
path in an HFS dataset:

/* rexx */
”free fi(pathname)”
”free fi(sysut1)”
”alloc fi(pathname) path(’/u/[your userid]/lib/NetRexxC.jar’)”
”alloc fi(sysut1) dsn(’netrexx.new’)”
”ocopy indd(sysut1) outdd(pathname) binary”

70

This works when the NetRexxC.jar file already exists, if that is not the case, just issue
touch NetRexxC.jar in that directory, the copy command will overwrite that empty
file.
Be sure to add the -Xquickstart option to the java command in the nrc binary file in
your path, or add it as an alias.

java -Xquickstart org.netrexx.process.NetRexxC $*

because this will shorten the startup time required to a more or less acceptable time.
When this is done, we can run some tests with it and see that everything works. Edit a
program source file with oedit, which works just like the ISPF/PDF editor and compile
or interpret it like we do on other versions of Unix. NetRexx programs can access HFS
(and ZFS) files the same way it does on Windows and Unix, and also network program-
ming with TCP/IP works in the same way from OMVS.
For a description howNetRexx can be used in a traditionalMVSworkload environment,
with batch JCL and using VSAM and sequential data sets and PDS directories, you are
referred to the NetRexx Programming Guide).

A note on character sets

z/OS USS is an EBCDIC Unix version, do note that the -utf8 option does only work
when your source file actually is encoded in utf8.

12.0.2 z/Linux

Installing on z/Linux is straightforward. Make sure the NetRexxC.jar is copied untrans-
lated to the z/Linux file system using ftp, scp or some other file transfer technology, and
take into account that the IBM JVM has Object.class in the vm.jar archive. At the mo-
ment, if not installed already, Java for z/Linux is a free download from the IBM website.
With z/Linux versions that have a VNC server installed and available, Java Graphical
User Interfaces (GUI) can be used without installing X client software.

71

13

ARMABI Remarks

For the next two chapters, it is relevant to know about a specific issue with ARM pro-
cessors, as used in both the Raspberry Pi and the Beaglebone Black, with regard to the
JVM distribution that is used. ARM processors are available in many different config-
urations, and because of considerations of pricing and power requirements, not all of
these include hardware floating point units. The difference between these is the reason
of the existence of two Embedded Application Binary Interfaces or EABIs for ARM: soft
float and VFP (Vector Floating Point). Although there is forward compatibility between
soft and hard float, there is no backward compatibility. In the Linux community, releases
built using these EABI’s are called armel based distributions.
Unfortunately, VFP has an inefficient way of passing floating point values through inter-
mediate integer registers to the floating point registers where they can be used. This has
given rise to a third EABI, which is called armhf, also called hard float. This architecture
can be seen as the future, because the important Linux distributions are moving towards
it. Depending on the release of your operating system, your Raspberry Pi or Beaglebone
Black’s software can be operating in armel or armhf mode. The consequence of this is
that the JVM implementation must match the architecture, or it will not work.
The JVM that are installed using the package manager that is native to the operating
system will choose the right architecture. For the Oracle Java versions, it is important
to know that the released version 7 JVM is soft-float armel and that there is currently a
JVM 8 preview that is hard-float. The recommended OS for the Raspberry Pi is Debian
Wheezy “Raspbian”, which is hard float. The Beaglebone Black comes with Ångstrom
Linux, which is soft-float and cannot run the Oracle Java 8 preview.
The easiest way to spot the architecture is to look for these components (armel of armhf)
in the package names when installing software. There is a way to determine which EABI
conventions were used, which is mentioned here for completeness: the command

readelf -A /proc/self/exe | grep Tag_ABI_VFP_args

returns:

Tag_ABI_VFP_args: VFP registers

when the OS distribution is armhf and nothing, when it is armel.

72

14

Installing and running on the BeagleBone Black

14.0.1 Starting with an unmodified system

The following instructions assume a new system, running the default Ångstrom Linux
distribution. Since NetRexx is an alternative language for the JVM, you must first have
Java installed on the BeagleBone Black.

14.0.2 Install Java
. From the Ångstrom repository.

Login as root
opkg update
opkg install openjdk-6-jdk

If that fails (for one reason or another), install the pieces of Java step-by-step:
opkg install openjdk-6-common
opkg install openjdk-6-java
opkg install openjdk-6-jre
opkg install openjdk-6-jdk
opkg install openjdk-6-vm-zero

And if that fails (for whatever reason), go directly to the repositories at http://
www.angstrom-distribution.org/repo/ and fetch the packages individually by
direct URL, using the list above in order:
opkg install <URL>. From Oracle
Download the JDK from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.htm. Ensure that:. You accept the license agreement, and. select the ”Linux ARM” version
As this is written, the file to download is http://download.oracle.com/otn-pub/
java/jdk/7u25-b15/jdk-7u25-linux-arm-sfp.tar.gz
Then, while logged in as root:. mkdir /usr/java. Move the downloaded file to /usr/java. tar zxvf jdk-7u25-linux-arm-sfp.tar.gz. Delete the downloaded file (optional, but saves space)
Add /usr/java/jdk1.7.0_25/bin to the PATH:. Edit /etc/profile

73

http://www.angstrom-distribution.org/repo/
http://www.angstrom-distribution.org/repo/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.htm
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.htm
http://download.oracle.com/otn-pub/java/jdk/7u25-b15/jdk-7u25-linux-arm-sfp.tar.gz
http://download.oracle.com/otn-pub/java/jdk/7u25-b15/jdk-7u25-linux-arm-sfp.tar.gz

. Insert PATH=$PATH:/usr/bin/jdk1.7.0_25/bin
Somewhere between the existing PATH and the final export statements.

14.0.3 Install NetRexx

Download the NetRexx distribution

wget http://netrexx.org/files/ NetRexx3.11-GA.zip

Create or select a destination directory (like /usr/netrexx/), move the downloaded file
there, and

unzip NetRexx3.11-GA.zip

Then simply follow the NetRexx recommendations to finalize the installation.

74

15

Installing and running on the Raspberry Pi

15.0.1 Running NetRexx in 10 minutes on the Raspberry Linux/ARM system

This install guide is different, in the sense that it describes the entire setup of the Rasp-
berry Pi system, including NetRexx.

Linux on ARM

The Raspberry Pi is an inexpensive computer, containing an ARM architecture CPU on
a board the size of a credit card, which sells for $35. It boots from an SD card, the kind
you have in your digital camera. In a few small steps you can be up and running with
NetRexx. Recent Raspbian distributions already contain Java.
. Use an SD card of suitable size (and known brand)25, at least 2GB but 8 or 16 is

advisable. Download the raspbian image from http://www.raspberrypi.org/downloads. Hook up an SD Card writer (the one in your digital camera probably also works)
to the USB port of your computer. While taking good care not to overwrite your harddisk, use dd or, on Windows,
Win32DiskManager to write the image to the SD card. This takes a minute. Good
instructions are at http://elinux.org/RPi_Easy_SD_Card_Setup. Now unpack the Raspberry Pi, connect the hdmi to a tv or via an hdmi-monitor
cable to a monitor, connect a keyboard (mouse can be attached later, if at all), and
connect the mini-usb adapter to the power socket. I used a spare plug from an old
phone. It boots and gives a lot of Unix messages. The first boot is not very quick.
Connect an ethernet cable to your router26.. You land in the raspi-config system. Resize the partitions to fill your SD card.
Change the password for the pi user, set the default locale, and enable ssh. You can
worry with the other options later.. Note the IP address that the system received from DHCP. Login from another system, for example using Putty (for Windows) or use ssh
pi@your.ip.add.ress (these are the numbers of an IP4 address). Use scp or ftp (binary mode) to transmit the NetRexxC.jar to the system, or install
the whole NetRexx package. There is an unzip command available. Set path and classpath as indicated earlier, and run NetRexx. You have the option
to develop and compile on the Raspberry, or just upload class files to it.

25Not all cards work; the large brands do. SanDisk Ultra SDHC 16Gig cards are verified to work.
26The entire installation can be done without connection a monitor if so desired. You can find the Raspberry on your network by

using nmap, or looking at your router interface. Be sure to re-enable ssh when running raspi-config.

75

http://www.raspberrypi.org/downloads
http://elinux.org/RPi_Easy_SD_Card_Setup

16

Troubleshooting

Can’t find class org.netrexx.process.NetRexxC probably means that the NetRexxC.jar
file has not been specified in your CLASSPATH setting, or is misspelled, or is in the
wrong case, or (for Java 1.2 or later) is not in the Java \lib\ext directory. Note that in
the latter case there are two lib directories in the Java tree; the correct one is in the
Java Runtime Environment directory (jre). The Setting the CLASSPATH section
contains information on setting the CLASSPATH.

+++ Error:The class ’java.lang.Object’ cannot be found. You are runningwith an IBM
JVM or JRE. The java.lang.Object class is packaged in the file vm.jar, which needs
to be on your CLASSPATH

Can’t find class hello maymean that the directory with the hello.class file is not in your
CLASSPATH (you may need to add a . (dot) to the CLASSPATH, signifying the
current directory), or either the filename or name of the class (in the source) is
spelled wrong (the java command is [very] case-sensitive). Note that the name of
the class must not include the .class extension.

Exception ... NoClassDefFoundError: sun/tools/javac/Main This indicates that you
did not add the Java tools to your CLASSPATH (hence Java could not find the
javac compiler). Your system might not have tools.jar: use the -ecj option on the
compile command, and use NetRexxF.jar.

Error opening the file ’hello.java’ [C:\ProgramFiles(86) \javajdk1 7.0.05 jrebinhello.java
(Access is denied)] - your userid needs write authorization on the current direc-
tory. Please copy the source file to a writeable directory and try again.

Extra blanks You have an extra blank or two in the CLASSPATH. Blanks should only
occur in the middle of directory names (and even then, you probably need some
double quotes around the SET command or the CLASSPATH segment with the
blank). The JVM is sensitive about this.

Permission Denied You are trying the NetRexxC.sh or nrc scripts under Linux or other
Unix system, and are getting a Permission denied message. This probably means
that you have not marked the scripts as being executable. To do this, use the chmod
command, for example: chmod 751 NetRexxC.sh.

No such file You are trying the NetRexxC.sh or nrc scripts under Linux or other Unix
system, and are getting aNo such file or syntax errormessage from bash.This prob-
ably means that you did not use the unzip -a command to unpack the NetRexx
package, so CRLF sequences in the scripts were not converted to LF.

You have only the Java runtime installed, and not the toolkit. If the toolkit is installed,
you should have a program called javac on your computer. You can check whether
javac is available andworking by issuing the javac command at a command prompt;
it should respond with usage information.

76

java.lang.OutOfMemoryError when running the compiler probably means that the
maximum heap size is not sufficient. The initial size depends on your Java virtual
machine; you can change it to (say) 128 MegaBytes by setting the environment
variable:

SET NETREXX_JAVA=-Xmx128M
The NetRexxC.cmd and .bat files add the value of this environment variable to the
options passed to java.exe. If you’re not using these, modify your java command or
script appropriately.

Down-level Java You have a down-level version of Java installed. Java 1.6, or more re-
cent, is needed for NetRexx 3.11-GA. The level of the JVM can be checked with
the command:
java -version’

applet viewer needed Someof the samplesmust be viewed using the Java toolkit applet-
viewer or a Java-enabled browser. Please see the hypertext pages describing these
for detailed instructions. In general, if you see a message from Java saying:

void main(String argv[]) is not defined
this means that the class cannot be run using just the java command; it must be
run from another Java program, probably as an applet.

77

17

Current Restrictions

This chapter lists the restrictions for the current release. Please note that the presence
of an item in this section is not a commitment to remove a restriction in some future
update; NetRexx enhancements are dependent on on-going research, your feedback,
and available resources. You should treat this list as a “wish-list” (and please send in
your wishes, preferable as an RFE on the http://sourceforge.net/projects/netrexx
website).

17.1 General restrictions

1. The translator requires that Java 1.6 or later be installed. Note that Java 8 is the
current version, so the chance that you will be impacted by this is minimal.

2. Certain forward references (in particular, references to methods later in a program
from the argument list of an earlier method) are not handled by the translator. For
these, try reordering the methods.

17.2 Compiler restrictions

The following restrictions are due to the use of a translator for compiling, and would
probably only be lifted if a direct-to-bytecodes NetRexx compiler were built. Externally-
visible names (property, method, and class names) cannot be Java reserved words (you
probably want to avoid these anyway, as people who have to write in Java cannot refer to
them), and cannot start with “$0”.

1. There are various restrictions on naming and the contents of programs (the first
class name must match the program name, etc.), required to meet Java rules.

2. The javac compiler requires thatmutually-dependent source files be on the CLASS-
PATH, so it can find the source files. NetRexxC does not have this restriction,
but when using javac for the final compilation you will need to follow the con-
vention described in the Compiling multiple programs and using packages section
(see page 23).

3. The symbols option (which requests that debugging information be added to gen-
erated .class files) applies to all programs compiled together if any of them specify
that option.

4. Some binary floating point underflows may be treated as zero instead of being
trapped as errors.

78

http://sourceforge.net/projects/netrexx

5. When trace is used, side-effects of calls to this() and super() in constructors may
be seen before themethod andmethod call instructions are traced – this is because
the Java language does not permit tracing instructions to be added before the call
to this() or super().

6. The results of expressions consisting of the single term “null” are not traced.
7. When a minor (inner) class is explicitly imported, its parent class or classes must

also be explicitly imported, or javac will report that the class cannot be found.

17.3 Interpreter restrictions

Interpreting Java-based programs is complex, and is constrained by various security is-
sues and the architecture of the Java Virtual Machine. As a result, the following restric-
tions apply; these will not affect most uses of the interpreter.

1. Certain “built-in” Java classes27 are constrained by the JVM in that they are assumed
to be pre-loaded. An attempt to interpret them is allowed, but will cause the later
loading of any other classes to fail with a class cast exception. Interpreted classes
have a stub which is loaded by a private class loader. This means that they will
usually not be visible to external (non-interpreted) classes which attempt to find
them explicitly using reflection, Class.forName(), etc. Instead, these calls may find
compiled versions of the classes from the classpath. Therefore, to find the “live”
classes being interpreted, use the NetRexxA interpreter API interface (described
below).

2. An interpreter cannot completely emulate the actions taken by the Java VirtualMa-
chine as it closes down. Therefore, special rules are followed to determine when an
application is assumed to have endedwhen interpreting (that is, when any of –exec,
–arg, or –noarg is specified):

3. If the application being interpreted invokes the exit method of the java.lang.System
class, the run ends immediately (even if –prompt was specified). The call cannot be
intercepted by the interpreter, and is assumed to be an explicit request by the appli-
cation to terminate the process and release all resources. In other cases, NetRexxC
has to decide when the application ends and hence when to leave NetRexxC (or
display the prompt, if –prompt was specified). The following rules apply:
(a) If any of the programs being interpreted contains theNetRexx exit instruction

and the application leaves extra user threads active after themainmethod ends
then NetRexxC will wait for an exit instruction to be executed before assum-
ing the application has ended and exiting (or re-prompting). Otherwise (that
is, there are no extra threads, or no exit instruction was seen) the application
is assumed to have ended as soon as the main method returns and in this case
the run ends (or the prompt is shown) immediately.This rule allows a program
such as “hello world” to be run after a windowing application (which leaves
threads active) without a deadlocked wait. These rules normally “do the right
thing”. Applications which create windows may, however, appear to exit pre-
maturely unless they use the NetRexx exit instruction to end their execution,
because of the last rule.

27notably java.lang.Object, java.lang.String, and java.lang.Throwable

79

(b) Applications which include both thread creation and an exit instructionwhich
is never executed will wait indefinitely and will need to be interrupted by an
external “break” request, or equivalent, just as theywould if run from compiled
classes.

(c) Interpreting programs which set up their own security managers may prevent
correct operation of the interpreter.

80

Index

NetRexxC, class, 56
NetRexxC, scripts, 56
NetRexxR runtime classes, 21
Rexx, 10
arg, 10
case, 3
catch, 16
class, 9–11, 15, 62, 63
digits, 4
do, 3, 4, 16
else, 2, 3
end, 3, 4, 8, 11, 15, 16
exit, 3, 8
extends, 11, 15
for, 11
if, 2–4, 8
iterate, 8
loop, 4, 8, 11, 15
method, 8–12, 15
numeric, 4
otherwise, 3
package, 63
parse, 6–8, 12
return, 8, 9
returns, 9
say, iii, 1–5, 7–13, 15, 16
select, 3
set, 8
static, 8, 10
super, 11
then, 2–4, 8
this, 9
to, 4, 8, 15
trace, 12, 13
when, 3
while, 8

arg option, 66
arg words option, 61

BeagleBone Black, 73
binary option, 58

classpath option, 61
command, for compiling, 56
comments option, 59
compact option, 59

compiling, NetRexx programs, 56
compiling,interactive, 65
compiling,multiple programs, 62
compiling,options, 57
compiling,packages, 62
completion codes, from translator, 57
crossref option, 59

decimal option, 59
diag option, 59

EBCDIC installations, 69
exec option, 61, 66
explicit option, 59

file specifications, 56
flag, binary, 58
flag, nocompile, 61
flag, noconsole, 61
flag, run, 61
flag, savelog, 61
flag, time, 61
flag,arg, 66
flag,arg words, 61
flag,classpath, 61
flag,comments, 59
flag,compact, 59
flag,crossref, 59
flag,decimal, 59
flag,diag, 59
flag,exec, 61, 66
flag,explicit, 59
flag,format, 59
flag,java, 59
flag,keep, 61
flag,keepasjava, 61
flag,logo, 59
flag,nocompile, 67
flag,nojava, 67
flag,prompt, 65
flag,sourcedir, 59
flag,strictargs, 60
flag,strictassign, 60
flag,strictcase, 60
flag,strictimport, 60
flag,strictmethods, 60
flag,strictprops, 60

81

flag,strictsignal, 60
flag,symbols, 60
flag,trace, traceX, 60
flag,trace1, 67
flag,utf8, 60
flag,verbose, 66
flag,verbose, verboseX, 61
flag,warnexit0, 61
flags, 57
format option, 59

installation,BeagleBone Black, 73
installation,EBCDIC systems, 69
installation,Raspberri Pi, 75
installation,runtime only, 21
interactive translation, 65
interactive translation,exiting, 65
interactive translation,repeating, 65
interpreting,NetRexx programs, 66
interpreting,hints and tips, 67
interpreting,performance, 67

jar command, used for unzipping, 19
java option, 59
javac option, 61

keep option, 61
keepasjava option, 61

logo option, 59

NetRexx package, 19
netrexx_java (environment variable, 55
NetRexxF.jar, 19
nocompile option, 61, 67
noconsole option, 61
nojava option, 67
nrc scripts, 56

option words, 57
option, binary, 58
option, nocompile, 61
option, noconsole, 61
option, run, 61
option, savelog, 61
option, time, 61
option,arg, 66
option,arg words, 61
option,classpath, 61
option,comments, 59
option,compact, 59
option,crossref, 59
option,decimal, 59
option,diag, 59
option,exec, 61, 66
option,explicit, 59
option,format, 59
option,java, 59
option,keep, 61
option,keepasjava, 61
option,logo, 59

option,nocompile, 67
option,nojava, 67
option,prompt, 65
option,sourcedir, 59
option,strictargs, 60
option,strictassign, 60
option,strictcase, 60
option,strictimport, 60
option,strictmethods, 60
option,strictprops, 60
option,strictsignal, 60
option,symbols, 60
option,trace, traceX, 60
option,trace1, 67
option,utf8, 60
option,verbose, 66
option,verbose, verboseX, 61
option,warnexit0, 61

package/NetRexx, 19
packages, compiling, 62
performance, while interpreting, 67
projects, compiling, 62
prompt option, 65

Raspberry Pi, 75
return codes, from translator, 57
run option, 61
runtime,installation, 21

savelog option, 61
scripts, NetRexxC, 56
scripts, nrc, 56
sourcedir option, 59
strictargs option, 60
strictassign option, 60
strictcase option, 60
strictimport option, 60
strictmethods option, 60
strictprops option, 60
strictsignal option, 60
symbols option, 60

time option, 61
trace, traceX option, 60
trace1 option, 67

unpacking, 19
using the translator, 56
using the translator, as a Compiler, 56
using the translator,as an Interpreter, 66
utf8 option, 60

verbose option, 66
verbose, verboseX option, 61

warnexit0 option, 61

zip files, unpacking, 19

82

9 789081 909020

ISBN 978-90-819090-2-0

83

	The NetRexx Programming Series
	Typographical conventions
	Introduction
	A Quick Tour of NetRexx
	NetRexx programs
	Expressions and variables
	Control instructions
	NetRexx arithmetic
	Doing things with strings
	Parsing strings
	Indexed strings
	Arrays
	Things that aren’t strings
	Extending classes
	Tracing
	Binary types and conversions
	Exception and error handling
	Summary and Information Sources

	Requirements
	Installation
	Unpacking the NetRexx package
	The NetRexx packages
	First steps with NetRexx
	Installing the NetRexx Translator
	Installing just the NetRexx Runtime
	Setting the CLASSPATH
	Testing the NetRexx Installation

	Using a Docker image or the Native Compilers for JVM releases after 9
	Which to choose
	Native executables
	Docker Image

	The NetRexx Workspace - nrws
	Installation
	Starting nrws
	Exit nrws
	Exploring the NetRexx language
	Arithmetic Expressions
	Some Types
	Symbols, Variables, Assignments, and Declarations
	Conversion
	Calling Functions
	Long Lines
	Numbers
	Data Structures
	Expanding to Higher Dimensions
	Writing Your Own Functions
	A Typical Session
	Running Pipelines
	System Commands
	Input Files and NetRexx Files
	Input Files
	The workspace.input File
	The nrws.properties File
	The nrws.history file(s)
	Workspace for NetRexx System Commands
	Introduction
)cd
)clear
)display
)frame
)help
)history
)import
)numeric
)options
)package
)pquit
)quit
)read
)set
)show
)synonym
)system
)trace
)use
)what

	Unicode
	Running on a JRE-only environment
	Eclipse Batch Compiler
	The -ecj and -javac translator options
	The netrexx_java environment variable
	Passing options to the Java Compiler
	Interpreting

	Using the translator
	Using the translator as a compiler
	The translator command
	Compiling multiple programs and using packages

	Programmatic use of the NetRexxC translator
	Using the prompt option
	Using the translator as an Interpreter
	Interpreting – Hints and Tips
	Interpreting – Performance

	Installing on an IBM Mainframe
	ARM ABI Remarks
	Installing and running on the BeagleBone Black
	Installing and running on the Raspberry Pi
	Troubleshooting
	Current Restrictions
	General restrictions
	Compiler restrictions
	Interpreter restrictions

	Index

